Assessment of bioactive compounds, antioxidant properties and morphological parameters in selected microgreens cultivated in soilless media.


Journal

Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288

Informations de publication

Date de publication:
09 10 2024
Historique:
received: 08 06 2024
accepted: 23 09 2024
medline: 10 10 2024
pubmed: 10 10 2024
entrez: 9 10 2024
Statut: epublish

Résumé

The study investigated the effect of soilless media (burlap), on the morphological traits and antioxidant activities of microgreens from Brassicaceae, Amaranthaceae, and Linaceae families. The results revealed significant variations were observed in the selected morphological, biochemical composition, and antioxidant capacity of the microgreens. The radish sango and microgreens showed superior morphological characteristics compared to other microgreens. The elemental composition analysis revealed consistent moisture, ash, fat, fiber, and protein content across all families. The results revealed significant variations in the biochemical composition and antioxidant capacity of the microgreens, depending on the growing medium and between microgreens. Notably, microgreens differed in photosynthetic pigment profiles, with flaxseed and cabbage showing the highest chlorophyll content of 26.59 to 27.18 µg/g, FW and carotenoid content in a range of 3.74 to 6.39 µg/g, FW was observed in microgreens. The radish sango and beetroot microgreens exhibited elevated anthocyanin levels of 27.94-28.25 µmol/100 g, FW. Biochemical analysis indicated varying levels of ascorbic acid (177.58 to 256.46 mg/100 g, FW), total glucosinolate content (4.09 to 47.38 µmol/g, FW), phenolic content (131.44 to 298.56 mg GAE/100 g, FW), and flavonoid content (10.94 to 18.14 mg QUE/100 g, FW) were observed in selected microgreens families. Radish sango microgreens demonstrated the highest DPPH (76.82%, FW) and ABTS (88.49%, FW) radical scavenging activities, indicating superior antioxidant potential. The study showed that Brassicaceae microgreens are particularly rich in bioactive and antioxidant properties. Additionally, studies could assess the economic feasibility and scalability of soilless cultivation methods for microgreens to support their inclusion in sustainable agricultural practices and health-promoting diets.

Identifiants

pubmed: 39384958
doi: 10.1038/s41598-024-73973-w
pii: 10.1038/s41598-024-73973-w
doi:

Substances chimiques

Antioxidants 0
Carotenoids 36-88-4
Chlorophyll 1406-65-1
Anthocyanins 0
Phytochemicals 0

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

23605

Subventions

Organisme : King Saud University Riyadh Saudi Arabia
ID : RSPD2024R706
Organisme : King Saud University Riyadh Saudi Arabia
ID : RSPD2024R706

Informations de copyright

© 2024. The Author(s).

Références

Çeki̇N, D. et al. Comparative analysis of closed hydroponic systems and planting seasons for Lettuces. Turk. J. Agric. For.48, 344–353. https://doi.org/10.55730/1300-011x.3186 (2024).
doi: 10.55730/1300-011x.3186
Chen, H., Tong, X. & Tan, L. Consumers’ acceptability and perceptions toward the consumption of hydroponically and soil grown broccoli microgreens. J. Agric. Food Res.2, 100051 (2020).
Tavan, M. et al. Optimizing sensor-based irrigation management in a soilless vertical farm for growing microgreens. Front. Sustainable Food Syst. Food Syst.4, 622720 (2021).
doi: 10.3389/fsufs.2020.622720
Ghoora, M. D., Babu, D. R. & Srividya, N. Nutrient composition, oxalate content and nutritional ranking of ten culinary microgreens. J. Food Compos. Anal.91, 103495 (2020).
doi: 10.1016/j.jfca.2020.103495
Singh, M. et al. Comparison of mineral composition in microgreens and mature leaves of celery (Apium graveolens L). Biol. Trace Elem. Res.201, 4156–4166 (2022).
pubmed: 36447002 doi: 10.1007/s12011-022-03483-1
Gunjal, M. et al. Comparative analysis of morphological, nutritional, and bioactive properties of selected microgreens in alternative growing medium. S Afr. J. Bot.165, 188–201 (2024).
doi: 10.1016/j.sajb.2023.12.038
Kopsell, D. A., Sams, C. E., Metallo, R. M., Waterland, N. L. & Kopsell, D. E. Biomass, carbohydrates, pigments, and mineral elements in kale (Brassica oleracea var acephala) microgreens respond to LED blue-light wavelength. Sci. Hortic.328, 112929 (2024).
doi: 10.1016/j.scienta.2024.112929
Dimita, R. et al. Volatile compounds and total phenolic content of perilla frutescens at microgreens and mature stages. Horticulturae. 8, 71 (2022).
doi: 10.3390/horticulturae8010071
Ntsoane, M. L. L. et al. The phytonutrient content and yield of Brassica microgreens grown in soilless media with different seed densities. Horticulturae. 9, 1218 (2023).
doi: 10.3390/horticulturae9111218
Sharma, A. et al. Controlled Environment Ecosystem: a plant growth system to combat climate change through soilless culture. Crop Des.3, 100044 (2024).
Acharya, J., Gautam, S., Neupane, P. & Niroula, A. Pigments, ascorbic acid, and total polyphenols content and antioxidant capacities of beet (Beta vulgaris) microgreens during growth. Int. J. Food Prop.24, 1175–1186 (2021).
doi: 10.1080/10942912.2021.1955924
Luo, L. et al. Effects of LED light quality on broccoli microgreens plant growth and nutrient accumulation. J. Plant. Growth Regul. 1–9 (2024).
Yadav, L. P., Koley, T. K., Tripathi, A. & Singh, S. Antioxidant potentiality and mineral content of summer season leafy greens: comparison at mature and microgreen stages using chemometric. Agric. Res.8, 165–175 (2018).
doi: 10.1007/s40003-018-0378-7
Di Gioia, F., De Bellis, P., Mininni, C., Santamaria, P. & Serio, F. Physicochemical, agronomical and microbiological evaluation of alternative growing media for the production of rapini (Brassica rapa L.) microgreens. J. Sci. Food Agric.97, 1212–1219 (2016).
pubmed: 27311947 doi: 10.1002/jsfa.7852
Polash, M. A. S., Sakil, A., Sazia, S. & Hossain, A. Selection of suitable growing media and nutritional assessment of microgreens. Agric. Res. J.56, 752 (2019).
Saleh, R. et al. Growth and biochemical composition of microgreens grown in different formulated soilless media. Plants. 11, 3546 (2022).
pubmed: 36559657 pmcid: 9784075 doi: 10.3390/plants11243546
Thepsilvisut, O. et al. Efficacy of agricultural and food wastes as the growing media for sunflower and water spinach microgreens production. Horticulturae. 9, 876 (2023).
doi: 10.3390/horticulturae9080876
Senevirathne, G. I., Gama-Arachchige, N. S. & Karunaratne, A. M. Germination, harvesting stage, antioxidant activity and consumer acceptance of ten microgreens. Ceylon J. Sci.48, 91 (2019).
doi: 10.4038/cjs.v48i1.7593
Frąszczak, B. et al. Morphological and photosynthetic parameters of green and red kale microgreens cultivated under different light spectra. Plants. 12, 3800 (2023).
pubmed: 38005697 pmcid: 10674929 doi: 10.3390/plants12223800
Bulgari, R., Baldi, A., Ferrante, A. & Lenzi, A. Yield and quality of basil, Swiss chard, and rocket microgreens grown in a hydroponic system. N Z. J. Crop Hortic. Sci.45, 119–129 (2016).
doi: 10.1080/01140671.2016.1259642
Xiao, Z. et al. Microgreens of Brassicaceae: genetic diversity of phytochemical concentrations and antioxidant capacity. LWT. 101, 731–737 (2019).
doi: 10.1016/j.lwt.2018.10.076
Singh, A. et al. Emergence of microgreens as a valuable food, current understanding of their market and consumer perception: a review. Food Chem. X. 23, 101527 (2024).
pubmed: 38974201 pmcid: 11225695 doi: 10.1016/j.fochx.2024.101527
Dhaka, A. S. et al. Evaluation of growth conditions, antioxidant potential, and sensory attributes of six diverse microgreens species. Agriculture. 13, 676 (2023).
doi: 10.3390/agriculture13030676
Hoang, G. M. & Vu, T. T. Selection of suitable growing substrates and quality assessment of Brassica microgreens cultivated in greenhouse. Acad. J. Bio. 44, 133–142 (2022).
doi: 10.15625/2615-9023/16833
Signore, A., Somma, A., Leoni, B. & Santamaria, P. Optimising sowing density for microgreens production in rapini, kale and cress. Horticulturae. 10, 274 (2024).
doi: 10.3390/horticulturae10030274
Bhaswant, M., Shanmugam, D. K., Miyazawa, T., Abe, C. & Miyazawa, T. Microgreens-a comprehensive review of bioactive molecules and health benefits. Molecules. 28, 867 (2023).
pubmed: 36677933 pmcid: 9864543 doi: 10.3390/molecules28020867
Di Gioia, F. et al. Yield performance, mineral profile, and nitrate content in a selection of seventeen microgreen species. Front. Plant. Sci.14, (2023).
Jones-Baumgardt, C., Llewellyn, D., Ying, Q. & Zheng, Y. Intensity of sole-source light-emitting diodes affects growth, yield, and quality of Brassicaceae microgreens. HortScience. 54, 1168–1174 (2019).
doi: 10.21273/HORTSCI13788-18
Kyriacou, M. C. et al. Functional quality in novel food sources: genotypic variation in the nutritive and phytochemical composition of thirteen microgreens species. Food Chem.277, 107–118 (2019).
pubmed: 30502125 doi: 10.1016/j.foodchem.2018.10.098
Kowitcharoen, L., Phornvillay, S., Lekkham, P., Pongprasert, N. & Srilaong, V. Bioactive composition and nutritional profile of microgreens cultivated in Thailand. Appl. Sci.11, 7981 (2021).
doi: 10.3390/app11177981
Eswaranpillai, U., Murugesan, P. & Karuppiah, P. Assess the impact of cultivation substrates for growing sprouts and microgreens of selected four legumes and two grains and evaluation of its nutritional properties. Plant. Sci. Today. 10, 160–169 (2023).
Khatoon, S. & Singh, M. Impact of various substrates on the physicochemical properties of radish microgreens. Annals Phytomedicine. 11, 591–596 (2022).
Podsędek, A. et al. LED light quality affected bioactive compounds, antioxidant potential, and nutritional value of red and white cabbage microgreens. Appl. Sci.13, 5435 (2023).
doi: 10.3390/app13095435
Kaur, N., Singh, B., Kaur, A. & Yadav, M. P. Impact of growing conditions on proximate, mineral, phenolic composition, amino acid profile, and antioxidant properties of black gram, mung bean, and chickpea microgreens. J. Food Process. Preserv46, (2022).
Ordovas, J. M., Ferguson, L. R., Tai, E. S. & Mathers, J. C. Personalised nutrition and health. BMJ (2018).
Devi, C. B., Bains, K. & Kaur, H. Effect of drying procedures on nutritional composition, bioactive compounds and antioxidant activity of wheatgrass (Triticum aestivum L). J. Food Sci. Technol.56, 491–496 (2018).
pubmed: 30728593 pmcid: 6342778 doi: 10.1007/s13197-018-3473-7
Ghoora, M. D., Haldipur, A. C. & Srividya, N. Comparative evaluation of phytochemical content, antioxidant capacities and overall antioxidant potential of select culinary microgreens. J. Agric. Food Res.2, 100046 (2020).
Sanyukta, N. et al. Comprehensive analysis of physicochemical, functional, thermal, and morphological properties of microgreens from different botanical sources. ACS Omega. 8, 29558–29567 (2023).
pubmed: 37608870 pmcid: 10442067 doi: 10.1021/acsomega.3c03429
Altuner, F. Determination of biochemical composition and pigment content in legume and cereal microgreens. Legume Res.44, 1018–1025 (2021).
Fayezizadeh, M. R., Ansari, N. A., Sourestani, M. M. & Hasanuzzaman, M. Balancing yield and antioxidant capacity in basil microgreens: an exploration of nutrient solution concentrations in a floating system. Agriculture. 13, 1691 (2023).
doi: 10.3390/agriculture13091691
El-Nakhel, C. et al. Nutrient supplementation configures the bioactive profile and production characteristics of three Brassica L. microgreens species grown in peat-based media. Agronomy. 11, 346 (2021).
doi: 10.3390/agronomy11020346
Martínez-Ispizua, E. et al. The nutritional quality potential of microgreens, baby leaves, and adult lettuce: an underexploited nutraceutical source. Foods. 11, 423 (2022).
pubmed: 35159573 pmcid: 8834567 doi: 10.3390/foods11030423
Khandaker, M. M., Rahmat, S., Alias, N., Mohd, K. S. & Mat, N. The effects of different growing media on growth, flowering and quality of Petunia Grandiflora. Tarım Bilim Derg 373–383 (2019).
Xiao, Z., Lester, G. E., Luo, Y. & Wang, Q. Assessment of vitamin and carotenoid concentrations of emerging food products: edible microgreens. J. Agric. Food Chem.60, 7644–7651 (2012).
pubmed: 22812633 doi: 10.1021/jf300459b
Ishida, M., Hara, M., Fukino, N., Kakizaki, T. & Morimitsu, Y. Glucosinolate metabolism, functionality and breeding for the improvement of Brassicaceae vegetables. Breed. Sci.64, 48–59 (2014).
pubmed: 24987290 pmcid: 4031110 doi: 10.1270/jsbbs.64.48
Mawlong, I., Kumar, S., Gurung, B., Singh, K. H. & Singh, D. A simple spectrophotometric method for estimating total glucosinolates in mustard de-oiled cake. Int. J. Food Prop.20, 3274–3281 (2017).
doi: 10.1080/10942912.2017.1286353
Priti et al. Diversity in phytochemical composition, antioxidant capacities, and nutrient contents among mungbean and lentil microgreens when grown at plain-altitude region (Delhi) and high-altitude region (Leh-ladakh), India. Front. Plant. Sci.12, (2021).
Lee, S. et al. LED lights influenced phytochemical contents and biological activities in kale (Brassica oleracea L. var. acephala) microgreens. Antioxidants 12, 1686 (2023).
Partap, M. et al. Microgreen: a tiny plant with superfood potential. J. Funct. Foods. 107, 105697 (2023).
doi: 10.1016/j.jff.2023.105697
Sharma, A. et al. Optimization of a process for a microgreen and fruit based ready to serve beverage. Int. J. Food Stud. 41–56 (2021).
Sharma, P. et al. Optimization of a process for microgreen and fruit-based functional beverage. An. Acad. Bras. Cienc.92, (2020).
Sharma, N. et al. Evaluation of anthocyanin content, antioxidant potential and antimicrobial activity of black, purple and blue colored wheat flour and wheat-grass juice against common human pathogens. Molecules. 25, 5785 (2020).
pubmed: 33302587 pmcid: 7764458 doi: 10.3390/molecules25245785
Kullaj, E. New insights on postharvest ecophysiology of fresh horticultural crops. Elsevier eBooks. 1–38. https://doi.org/10.1016/b978-0-12-804313-4.00001-3 (2016).
Vaštakaitė-Kairienė, V., Jurkonienė, S., Rasiukevičiūtė, N., Karklelienė, R. & Samuolienė, G. The influence of pre-harvest leds on phytochemical constituents and antioxidant activity of microgreens during short-term storage. Agronomy. 13, 2188 (2023).
doi: 10.3390/agronomy13082188
Patil, M. et al. Effect of postharvest treatments and storage temperature on the physiological, nutritional, and shelf-life of broccoli (Brassica oleracea) microgreens. Sci. Hortic.327, 112805 (2024).
doi: 10.1016/j.scienta.2023.112805
Petroski, W. & Minich, D. M. Is there such a thing as anti-nutrients? A narrative review of perceived problematic plant compounds. Nutrients. 12, 2929 (2020).
pubmed: 32987890 pmcid: 7600777 doi: 10.3390/nu12102929
Huang, Q., Liu, X., Zhao, G., Hu, T. & Wang, Y. Potential and challenges of tannins as an alternative to in-feed antibiotics for farm animal production. Anim. Nutr.4, 137–150 (2018).
pubmed: 30140753 doi: 10.1016/j.aninu.2017.09.004
Sathithon, N. P. Effect of sprouting on the chemical and nutritional qualities and phenolic alkaloid content of lotus (Nelumbo nucifera Gaertn.) Seeds. Afr. J. Food Sci.6, (2012).
Aktaş, Ş., Köse, Ö. D. E., Kardeş, Y. M. & Mut, Z. The effect of different germination times on some nutritional and anti-nutritional properties of green lentil sprouts. Soil. Stud.11, 7–11 (2022).
Gemede, H. F. Antinutritional factors in plant foods: potential health benefits and adverse effects. Int. J. Nutri Food Sci.3, 284–289 (2014).
doi: 10.11648/j.ijnfs.20140304.18
Longvah, T., An̲antan̲, I., Bhaskarachary, K., Venkaiah, K. & Longvah, T. Indian food composition tables. Hyderabad: National Institute of Nutrition, Indian Council of Medical Research. 2–58 (2017).
Poudel, P., Di Gioia, F., Lambert, J. D. & Connolly, E. L. Zinc biofortification through seed nutri-priming using alternative zinc sources and concentration levels in pea and sunflower microgreens. Front. Plant. Sci.14, 1177844 (2023).
pubmed: 37139105 pmcid: 10150129 doi: 10.3389/fpls.2023.1177844
Syed, S., Buddolla, V. & Lian, B. Oxalate carbonate pathway-conversion and fixation of soil carbon-a potential scenario for sustainability. Front. Plant. Sci.11, 591297 (2020).
pubmed: 33424886 pmcid: 7793669 doi: 10.3389/fpls.2020.591297
Akula, R. & Ravishankar, G. A. Influence of abiotic stress signals on secondary metabolites in plants. Plant. Signal. Behav.6, 1720–1731 (2011).
doi: 10.4161/psb.6.11.17613
Samtiya, M., Aluko, R. E. & Dhewa, T. Plant food anti-nutritional factors and their reduction strategies: an overview. Food Prod. Process. Nutr.2, (2020).
A.O.A.C. Official Methods of Analysis of AOAC International, 17th edn. AOAC International, AOAC. MD, USA. (2010).
Lowry, O. H., Rosebrough, N. J., Farr, A. L. & Randall, R. J. Protein measurement with the Folin phenol reagent. J. Biol. Chem.193, 265–275 (1951).
pubmed: 14907713 doi: 10.1016/S0021-9258(19)52451-6
Alam, N. N. & Sharma, K. R. Estimation of phenolic content, flavonoid content, antioxidant, and alpha-amylase inhibitory activity of some selected plants from Siraha district Nepal. Asian J. Pharm. Clin. Res. 18–23 (2020).
Jagota, S. K. & Dani, H. M. A new colorimetric technique for the estimation of vitamin C using Folin phenol reagent. Anal. Biochem.127, 178–182 (1982).
pubmed: 7165085 doi: 10.1016/0003-2697(82)90162-2
Sirisangsawang, R. & Phetyim, N. Optimization of tannin extraction from coconut coir through response surface methodology. Heliyon. 9, e13377 (2023).
pubmed: 36816295 pmcid: 9936520 doi: 10.1016/j.heliyon.2023.e13377
Bok, V. V., Šola, I. & Rusak, G. Lemon juice formulations modulate in vitro digestive recovery of spinach phytochemicals. Food Technol. Biotech.60, 293–307 (2022).
doi: 10.17113/ftb.60.03.22.7104
Adegbusi, H. S., Ismail, A., Esa, N. M. & Daud, Z. A. M. Effects of formulated Nigerian yellow maize, soybean, and crayfish blends on some growth performance and physiological status. Food Prod. Process. Nutr.5, (2023).

Auteurs

Mahendra Gunjal (M)

Department of Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara, Punjab, India.

Jyoti Singh (J)

Department of Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara, Punjab, India.

Sawinder Kaur (S)

Department of Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara, Punjab, India.

Vikas Nanda (V)

Sant Longowal Institute of Engineering and Technology, Sangrur, Punjab, India.

Riaz Ullah (R)

Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia.

Zafar Iqbal (Z)

Department of Surgery, College of Medicine, King Saud University, P.O.Box 7805, Riyadh, 11472, Kingdom of Saudi Arabia.

Sezai Ercisli (S)

Department of Horticulture, Faculty of Agriculture, Ataturk University, 25240, Erzurum, Türkiye.

Prasad Rasane (P)

Department of Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara, Punjab, India. rasaneprasad@gmail.com.

Articles similaires

Fragaria Light Plant Leaves Osmosis Stress, Physiological
Sorghum Antioxidants Phosphorus Fertilizers Flavonoids

Classifications MeSH