The physiology of plants in the context of space exploration.


Journal

Communications biology
ISSN: 2399-3642
Titre abrégé: Commun Biol
Pays: England
ID NLM: 101719179

Informations de publication

Date de publication:
11 Oct 2024
Historique:
received: 30 11 2023
accepted: 30 09 2024
medline: 12 10 2024
pubmed: 12 10 2024
entrez: 11 10 2024
Statut: epublish

Résumé

The stress that the space environment can induce on plant physiology is of both abiotic and biotic nature. The abiotic space environment is characterized by ionizing radiation and altered gravity, geomagnetic field (GMF), pressure, and light conditions. Biotic interactions include both pathogenic and beneficial interactions. Here, we provide an overall picture of the effects of abiotic and biotic space-related factors on plant physiology. The knowledge required for the success of future space missions will lead to a better understanding of fundamental aspects of plant physiological responses, thus providing useful tools for plant breeding and agricultural practices on Earth.

Identifiants

pubmed: 39394270
doi: 10.1038/s42003-024-06989-7
pii: 10.1038/s42003-024-06989-7
doi:

Types de publication

Journal Article Review

Langues

eng

Sous-ensembles de citation

IM

Pagination

1311

Informations de copyright

© 2024. The Author(s).

Références

Angelopoulos, V. The ARTEMIS mission. Space Sci. Rev. 165, 3–25 (2011).
doi: 10.1007/s11214-010-9687-2
Binot, R. A., Tamponnet, C. & Lasseur, C. in Life Sciences and Space Research XXV. Vol. 14 Advances in Space Research (eds. MacElroy, R. D. et al.) 71–74 (Pergamon Press Ltd, 1994).
Bunchek, J. M. et al. Pick-and-eat space crop production flight testing on the International Space Station. J. Plant Interact. 19, 2292220 (2024).
doi: 10.1080/17429145.2023.2292220
Wheeler, R. M. et al. Effects of elevated and super-elevated carbon dioxide on salad crops for space. J. Plant Interact. 19, 2292219 (2024).
doi: 10.1080/17429145.2023.2292219
De Pascale, S. et al. Biology and crop production in Space environments: challenges and opportunities. Life Sci. Space Res. 29, 30–37 (2021).
doi: 10.1016/j.lssr.2021.02.005
Morita, M. T. & Tasaka, M. Gravity sensing and signaling. Curr. Opin. Plant Biol. 7, 712–718 (2004).
pubmed: 15491921 doi: 10.1016/j.pbi.2004.09.001
Fukaki, H. et al. Genetic evidence that the endodermis is essential for shoot gravitropism in Arabidopsis thaliana. Plant J. 14, 425–430 (1998).
pubmed: 9670559 doi: 10.1046/j.1365-313X.1998.00137.x
MacCleery, S. A. & Kiss, J. Z. Plastid sedimentation kinetics in roots of wild-type and starch-deficient mutants of Arabidopsis. Plant Physiol. 120, 183–192 (1999).
pubmed: 10318696 pmcid: 59250 doi: 10.1104/pp.120.1.183
Tasaka, M., Kato, T. & Fukaki, H. The endodermis and shoot gravitropism. Trends Plant Sci. 4, 103–107 (1999).
pubmed: 10322541 doi: 10.1016/S1360-1385(99)01376-X
Ottenschlager, I. et al. Gravity-regulated differential auxin transport from columella to lateral root cap cells. Proc. Natl Acad. Sci. USA 100, 2987–2991 (2003).
pubmed: 12594336 pmcid: 151453 doi: 10.1073/pnas.0437936100
Herranz, R. & Medina, F. J. Cell proliferation and plant development under novel altered gravity environments. Plant Biol. 16 Suppl 1, 23–30 (2014).
pubmed: 24112664 doi: 10.1111/plb.12103
Morris, E. C. et al. Shaping 3D root system architecture. Curr. Biol. 27, R919–R930 (2017).
pubmed: 28898665 doi: 10.1016/j.cub.2017.06.043
Roychoudhry, S. & Kepinski, S. Things fall into place: how plants sense and respond to gravity. Nature 631, 745–747 (2024).
pubmed: 39020186 doi: 10.1038/d41586-024-01747-5
Chen, J. et al. Amyloplast sedimentation repolarizes LAZYs to achieve gravity sensing in plants. Cell 186, 4788–4802.e4715 (2023).
pubmed: 37741279 doi: 10.1016/j.cell.2023.09.014
Nishimura, T. et al. Cell polarity linked to gravity sensing is generated by LZY translocation from statoliths to the plasma membrane. Science 381, 1006–1010 (2023).
pubmed: 37561884 doi: 10.1126/science.adh9978
Bai, Q. et al. Molecular mechanism of brassinosteroids involved in root gravity response based on transcriptome analysis. BMC Plant Biol. 24, 485 (2024).
pubmed: 38822229 pmcid: 11143716 doi: 10.1186/s12870-024-05174-6
Huang, S.-J. et al. A type III ACC synthase, ACS7, is involved in root gravitropism in Arabidopsis thaliana. J. Exp. Bot. 64, 4343–4360 (2013).
pubmed: 23943848 pmcid: 3808318 doi: 10.1093/jxb/ert241
Löfke, C. et al. Asymmetric gibberellin signaling regulates vacuolar trafficking of PIN auxin transporters during root gravitropism. Proc. Natl Acad. Sci. USA 110, 3627–3632 (2013).
pubmed: 23391733 pmcid: 3587205 doi: 10.1073/pnas.1300107110
Gutjahr, C. et al. Cholodny-Went revisited: a role for jasmonate in gravitropism of rice coleoptiles. Planta 222, 575–585 (2005).
pubmed: 16047199 doi: 10.1007/s00425-005-0001-6
Yoder, T. L., Zheng, H. Q., Todd, P. & Staehelin, L. A. Amyloplast sedimentation dynamics in maize columella cells support a new model for the gravity-sensing apparatus of roots. Plant Physiol. 125, 1045–1060 (2001).
pubmed: 11161060 pmcid: 64904 doi: 10.1104/pp.125.2.1045
Wyatt, S. E. & Kiss, J. Z. Plant tropisms: from Darwin to the International Space Station. Am. J. Bot. 100, 1–3 (2013).
pubmed: 23281390 doi: 10.3732/ajb.1200591
Chauvet, H., Pouliquen, O., Forterre, Y., Legué, V. & Moulia, B. Inclination not force is sensed by plants during shoot gravitropism. Sci. Rep. 6, 35431 (2016).
pubmed: 27739470 pmcid: 5064399 doi: 10.1038/srep35431
Kordyum, E. L. Plant cell gravisensitivity and adaptation to microgravity. Plant Biol. 16 Suppl 1, 79–90 (2014).
pubmed: 23731198 doi: 10.1111/plb.12047
Nedukha, E. M. Effects of microgravity on the structure and function of plant cell walls. Int. Rev. Cytol. 170, 39–77 (1997).
pubmed: 11536785 doi: 10.1016/S0074-7696(08)61620-4
Brykov, V. A., Generozova, I. P. & Shugaev, A. G. Ultrastructure and metabolic activity of pea mitochondria under clinorotation. Tsitol. Genet. 46, 20–26 (2012).
pubmed: 22856142
Stutte, G. W., Monje, O., Goins, G. D. & Tripathy, B. C. Microgravity effects on thylakoid, single leaf, and whole canopy photosynthesis of dwarf wheat. Planta 223, 46–56 (2005).
pubmed: 16160842 doi: 10.1007/s00425-005-0066-2
Kalinina, I. Microtubules spatial alterations in root cells of Brassica rapa under clinorotation. Cell. Biol. Int. 32, 581–583 (2008).
pubmed: 18155615 doi: 10.1016/j.cellbi.2007.11.003
Romanchuk, S. M. Ultrastructure of statocytes and cells of distal elongation zone of Arabidopsis thaliana under clinorotation. Tsitol. Genet. 44, 3–8 (2010).
pubmed: 21254615
Mugnai, S. et al. Oxidative stress and NO signalling in the root apex as an early response to changes in gravity conditions. Biomed. Res. Int. 2014, 834134 (2014).
pubmed: 25197662 pmcid: 4150467 doi: 10.1155/2014/834134
Kozeko, L. Y. & Kordyum, E. L. Heat shock proteins HSP70 and HSP90 in pea seedlings under clinorotation of different duration. J. Gravit. Physiol. 14, 115–116 (2007).
Medina, F. J. & Herranz, R. Microgravity environment uncouples cell growth and cell proliferation in root meristematic cells: the mediator role of auxin. Plant Signal. Behav. 5, 176–179 (2010).
pubmed: 20173415 pmcid: 2884128 doi: 10.4161/psb.5.2.10966
Manzano, A. I., Herranz, R., Manzano, A., van Loon, J. J. W. A. & Medina, F. J. Early effects of altered gravity environments on plant cell growth and cell proliferation: characterization of morphofunctional nucleolar types in an Arabidopsis cell culture system. Front. Astron. Space Sci. 3, 2 (2016).
Chebli, Y. et al. Cell wall assembly and intracellular trafficking in plant cells are directly affected by changes in the magnitude of gravitational acceleration. PLoS One 8, e58246 (2013).
pubmed: 23516452 pmcid: 3596410 doi: 10.1371/journal.pone.0058246
Karahara, I. et al. Vegetative and reproductive growth of Arabidopsis under microgravity conditions in space. J. Plant Res. 133, 571–585 (2020).
pubmed: 32424466 doi: 10.1007/s10265-020-01200-4
Manzano, A. et al. Novel, Moon and Mars, partial gravity simulation paradigms and their effects on the balance between cell growth and cell proliferation during early plant development. NPJ Microgravity 4, 9 (2018).
pubmed: 29644337 pmcid: 5884789 doi: 10.1038/s41526-018-0041-4
Jia, Y. & Lin, Z. W. The radiation environment on the Moon from galactic cosmic rays in a lunar habitat. Radiat. Res. 173, 238–244 (2010).
pubmed: 20095856 doi: 10.1667/RR1846.1
Dobynde, M. I., Shprits, Y. Y., Drozdov, A. Y., Hoffman, J. & Li, J. Beating 1 Sievert: optimal radiation shielding of astronauts on a mission to Mars. Space Weather 19, e2021SW002749 (2021).
Puchta, H. The repair of double-strand breaks in plants: mechanisms and consequences for genome evolution. J. Exp. Bot. 56, 1–14 (2005).
pubmed: 15557293
Bennetzen, J. L. & Wang, H. The contributions of transposable elements to the structure, function, and evolution of plant genomes. Annu. Rev. Plant Biol. 65, 505–530 (2014).
pubmed: 24579996 doi: 10.1146/annurev-arplant-050213-035811
Alzohairy, A. M. et al. Environmental stress activation of plant long-terminal repeat retrotransposons. Funct. Plant Biol. 41, 557–567 (2014).
pubmed: 32481013 doi: 10.1071/FP13339
Caplin, N. & Willey, N. Ionizing radiation, higher plants, and radioprotection: from acute high doses to chronic low doses. Front. Plant Sci. 9, 847 (2018).
pubmed: 29997637 pmcid: 6028737 doi: 10.3389/fpls.2018.00847
Arena, C., De Micco, V., Macaeva, E. & Quintens, R. Space radiation effects on plant and mammalian cells. Acta Astronaut. 104, 419–431 (2014).
doi: 10.1016/j.actaastro.2014.05.005
De Micco, V., Arena, C., Pignalosa, D. & Durante, M. Effects of sparsely and densely ionizing radiation on plants. Radiat. Environ. Biophys. 50, 1–19 (2011).
pubmed: 21113610 doi: 10.1007/s00411-010-0343-8
Mousseau, T. A. & Moller, A. P. Plants in the light of ionizing radiation: What have we learned from Chernobyl, Fukushima, and other “hot” places? Front. Plant Sci. 11, 9 (2020).
doi: 10.3389/fpls.2020.00552
Gudkov, S. V., Grinberg, M. A., Sukhov, V. & Vodeneev, V. Effect of ionizing radiation on physiological and molecular processes in plants. J. Environ. Radioact. 202, 8–24 (2019).
pubmed: 30772632 doi: 10.1016/j.jenvrad.2019.02.001
De Francesco, S. et al. Growth, anatomical, and biochemical responses of the space farming Candidate Brassica rapa L. Microgreens to low-LET ionizing radiation. Horticulturae 9, 452 (2023).
doi: 10.3390/horticulturae9040452
Vitale, E. et al. Light quality modulates photosynthesis and antioxidant properties of B. vulgaris L. plants from seeds irradiated with high-energy heavy ions: implications for cultivation in space. Plants 11, 18 (2022).
doi: 10.3390/plants11141816
Mulinacci, N. et al. Effects of ionizing radiation on bio-active plant extracts useful for preventing oxidative damages. Nat. Prod. Res. 33, 1106–1114 (2019).
pubmed: 29607691 doi: 10.1080/14786419.2018.1457663
Horemans, N. et al. Current evidence for a role of epigenetic mechanisms in response to ionizing radiation in an ecotoxicological context. Environ. Pollut. 251, 469–483 (2019).
pubmed: 31103007 doi: 10.1016/j.envpol.2019.04.125
De Micco, V., Arena, C., Di Fino, L. & Narici, L. Radiation environment in exploration-class space missions and plants’ responses relevant for cultivation in bioregenerative life support systems. Front. Plant Sci. 13, 17 (2022).
doi: 10.3389/fpls.2022.1001158
da Silva, J. A. T. & Dobranszki, J. Magnetic fields: how is plant growth and development impacted? Protoplasma 253, 231–248 (2016).
pubmed: 25952081 doi: 10.1007/s00709-015-0820-7
Radhakrishnan, R. Magnetic field regulates plant functions, growth and enhances tolerance against environmental stresses. Physiol. Mol. Biol. Plants 25, 1107–1119 (2019).
pubmed: 31564775 pmcid: 6745571 doi: 10.1007/s12298-019-00699-9
Sarraf, M. et al. Effect of magnetopriming on photosynthetic performance of plants. Int. J. Mol. Sci. 22, 14 (2021).
doi: 10.3390/ijms22179353
Maffei, M. E. in Bioelectromagnetism. History, Foundations and Applications (eds U. Shoogo & S. Tsukasa) Ch. 5, 191–214 (CRC Press, 2022).
Guo, J. P., Wan, H. Y., Matysik, J. & Wang, X. J. Recent advances in magnetosensing cryptochrome model systems. Acta Chim. Sin. 76, 597–604 (2018).
doi: 10.6023/A18040173
Hore, P. J. & Mouritsen, H. The radical-pair mechanism of magnetoreception. Annu. Rev. Biophys. 45, 299–344 (2016).
pubmed: 27216936 doi: 10.1146/annurev-biophys-032116-094545
Golesworthy, M. J. et al. Singlet-triplet dephasing in radical pairs in avian cryptochromes leads to time-dependent magnetic field effects. J. Chem. Phys. 159, 11 (2023).
doi: 10.1063/5.0166675
Pooam, M. et al. Magnetic sensitivity mediated by the Arabidopsis blue-light receptor cryptochrome occurs during flavin reoxidation in the dark. Planta 249, 319–332 (2019).
pubmed: 30194534 doi: 10.1007/s00425-018-3002-y
Hammad, M. et al. Cryptochrome mediated magnetic sensitivity in Arabidopsis occurs independently of light-induced electron transfer to the flavin. Photochem. Photobiol. Sci. 19, 341–352 (2020).
pubmed: 32065192 doi: 10.1039/c9pp00469f
Parmagnani, A. S., D’Alessandro, S. & Maffei, M. E. Iron-sulfur complex assembly: potential players of magnetic induction in plants. Plant Sci. 325, 111483 (2022).
pubmed: 36183809 doi: 10.1016/j.plantsci.2022.111483
Qin, S. et al. A magnetic protein biocompass. Nat. Mater. 15, 217–226 (2016).
pubmed: 26569474 doi: 10.1038/nmat4484
Yang, P. L. et al. A rationally designed building block of the putative magnetoreceptor MagR. Bioelectromagnetics 43, 317–326 (2022).
pubmed: 35598081 doi: 10.1002/bem.22413
Zhou, Y. J. et al. Towards magnetism in pigeon MagR: Iron- and iron- sulfur binding work indispensably and synergistically. Zool. Res. 44, 142–152 (2023).
pubmed: 36484226 pmcid: 9841195 doi: 10.24272/j.issn.2095-8137.2022.423
Guo, Z. et al. Modulation of MagR magnetic properties via iron–sulfur cluster binding. Sci. Rep. 11, 23941 (2021).
pubmed: 34907239 pmcid: 8671422 doi: 10.1038/s41598-021-03344-2
Occhipinti, A., De Santis, A. & Maffei, M. E. Magnetoreception: an unavoidable step for plant evolution? Trends Plant Sci. 19, 1–4 (2014).
pubmed: 24238701 doi: 10.1016/j.tplants.2013.10.007
Hori, K., Nilsson, A. & Tobias, S. M. Waves in planetary dynamos. Rev. Mod. Plasma Phys. 7, 5 (2023).
pubmed: 36588584 doi: 10.1007/s41614-022-00104-1
Teixeira da Silva, J. A. & Dobranszki, J. How do magnetic fields affect plants in vitro? Vitr. Cell Dev. Biol. Plant 51, 233–240 (2015).
doi: 10.1007/s11627-015-9675-z
Bertea, C. M., Narayana, R., Agliassa, C., Rodgers, C. T. & Maffei, M. E. Geomagnetic field (Gmf) and plant evolution: investigating the effects of Gmf reversal on Arabidopsis thaliana development and gene expression. J. Vis. Exp. 105, 53286 (2015).
Paponov, I. A., Fliegmann, J., Narayana, R. & Maffei, M. E. Differential root and shoot magnetoresponses in Arabidopsis thaliana. Sci. Rep. 11, 14 (2021).
doi: 10.1038/s41598-021-88695-6
Parmagnani, A. S., Mannino, G. & Maffei, M. E. Transcriptomics and metabolomics of reactive oxygen species modulation in near-null magnetic field-induced Arabidopsis thaliana. Biomolecules 12, 1824 (2022).
pubmed: 36551252 pmcid: 9775259 doi: 10.3390/biom12121824
Parmagnani, A. S. et al. The Geomagnetic Field (GMF) is required for Lima bean photosynthesis and reactive oxygen species production. Int. J. Mol. Sci. 24, 2896 (2023).
pubmed: 36769217 pmcid: 9917513 doi: 10.3390/ijms24032896
Agliassa, C., Narayana, R., Christie, J. M. & Maffei, M. E. Geomagnetic field impacts on cryptochrome and phytochrome signaling. J. Photochem. Photobiol. B-Biol. 185, 32–40 (2018).
doi: 10.1016/j.jphotobiol.2018.05.027
Vigani, G., Islam, M., Cavallaro, V., Nocito, F. F. & Maffei, M. E. Geomagnetic field (GMF)-dependent modulation of iron-sulfur interplay in Arabidopsis thaliana. Int. J. Mol. Sci. 22, 15 (2021).
doi: 10.3390/ijms221810166
Islam, M., Maffei, M. E. & Vigani, G. The geomagnetic field is a contributing factor for an efficient iron uptake in Arabidopsis thaliana. Front. Plant Sci. 11, 15 (2020).
doi: 10.3389/fpls.2020.00325
Agliassa, C. & Maffei, M. E. Reduction of geomagnetic field (GMF) to near null magnetic field (NNMF) affects some Arabidopsis thaliana clock genes amplitude in a light independent manner. J. Plant Physiol. 232, 23–26 (2019).
pubmed: 30530200 doi: 10.1016/j.jplph.2018.11.008
Rosen, A. D. Mechanism of action of moderate-intensity static magnetic fields on biological systems. Cell. Biochem. Biophys. 39, 163–173 (2003).
pubmed: 14515021 doi: 10.1385/CBB:39:2:163
Denegre, J. M., Valles, J. M. Jr., Lin, K., Jordan, W. B. & Mowry, K. L. Cleavage planes in frog eggs are altered by strong magnetic fields. Proc. Natl Acad. Sci. USA 95, 14729–14732 (1998).
pubmed: 9843957 pmcid: 24517 doi: 10.1073/pnas.95.25.14729
Valiron, O. et al. Cellular disorders induced by high magnetic fields. J. Magn. Reson. Imaging 22, 334–340 (2005).
pubmed: 16106367 doi: 10.1002/jmri.20398
Paul, A. L., Wheeler, R. M., Levine, H. G. & Ferl, R. J. Fundamental plant biology enabled by the space shuttle. Am. J. Bot. 100, 226–234 (2013).
pubmed: 23281389 doi: 10.3732/ajb.1200338
Penuelas, J., Llusia, J., Martinez, B. & Fontcuberta, J. Diamagnetic susceptibility and root growth responses to magnetic fields in Lens culinaris, Glycine soja, and Triticum aestivum. Electromag. Biol. Med. 23, 97–112 (2004).
doi: 10.1081/LEBM-200032772
Xu, C., Li, Y., Yu, Y., Zhang, Y. & Wei, S. Suppression of Arabidopsis flowering by near-null magnetic field is affected by light. Bioelectromagnetics 36, 476–479 (2015).
pubmed: 26095447 doi: 10.1002/bem.21927
Jaworska, M., Domanski, J., Tomasik, P. & Znoj, K. Stimulation of pathogenicity and growth of entomopathogenic fungi with static magnetic field. J. Plant Dis. Prot. 123, 295–300 (2016).
doi: 10.1007/s41348-016-0035-y
Nagy, P. & Fischl, G. Effect of static magnetic field on growth and sporulation of some plant pathogenic fungi. Bioelectromagnetics 25, 316–318 (2004).
pubmed: 15114642 doi: 10.1002/bem.20015
Fiorillo, A. et al. 14-3-3 proteins and the plasma membrane H+-ATPase are involved in maize (Zea mays) magnetic induction. Plants 12, 2887 (2023).
pubmed: 37571041 pmcid: 10421175 doi: 10.3390/plants12152887
Hore, P. J., Ivanov, K. L. & Wasielewski, M. R. Spin chemistry. J. Chem. Phys. 152, 120401 (2020).
pubmed: 32241144 doi: 10.1063/5.0006547
Drysdale, A. E. Life support trade studies involving plants. SAE Tech. Pap. 2001, 2362 (2001).
Paul, A. L. et al. Hypobaric biology: Arabidopsis gene expression at low atmospheric pressure. Plant Physiol. 134, 215–223 (2004).
pubmed: 14701916 pmcid: 316301 doi: 10.1104/pp.103.032607
Paul, A. L. et al. Patterns of Arabidopsis gene expression in the face of hypobaric stress. AoB Plants 9, 19 (2017).
doi: 10.1093/aobpla/plx030
Zhou, M. Q. et al. Dissecting low atmospheric pressure stress: Transcriptome responses to the components of hypobaria in Arabidopsis. Front. Plant Sci. 8, 528 (2017).
pubmed: 28443120 pmcid: 5385376 doi: 10.3389/fpls.2017.00528
Bauer, H. et al. The stomatal response to reduced relative humidity requires guard cell-autonomous ABA synthesis. Curr. Biol. 23, 53–57 (2013).
pubmed: 23219726 doi: 10.1016/j.cub.2012.11.022
Monje, O. & Bugbee, B. Adaptation to high CO
pubmed: 11543216 doi: 10.1046/j.1365-3040.1998.00284.x
Arce, C. C. M., Bont, Z., Machado, R. A. R., Cristaldo, P. F. & Erb, M. Adaptations and responses of the common dandelion to low atmospheric pressure in high-altitude environments. J. Ecol. 109, 3487–3501 (2021).
doi: 10.1111/1365-2745.13736
Musgrave, M. E., Gerth, W. A., Scheld, H. W. & Strain, B. R. Growth and mitochondrial respiration of mungbeans (Phaseolus aureus Roxb) germinated at low-pressure. Plant Physiol. 86, 19–22 (1988).
pubmed: 11538232 pmcid: 1054420 doi: 10.1104/pp.86.1.19
Astafurova, T. P., Vaishlya, O. B., Verkhoturova, G. S., Zaitseva, T. A. & Chirkova, T. V. Effect of hypobaric hypoxia on photosynthetic and respiratory metabolism of plants. Sov. Plant Physiol. 37, 524–529 (1990).
Richards, J. T. et al. Exposure of Arabidopsis thaliana to hypobaric environments: Implications for low-pressure bioregenerative life support systems for human exploration missions and terraforming on Mars. Astrobiology 6, 851–866 (2006).
pubmed: 17155885 doi: 10.1089/ast.2006.6.851
He, C. J., Davies, F. T. & Lacey, R. E. Separating the effects of hypobaria and hypoxia on lettuce: growth and gas exchange. Physiol. Plant. 131, 226–240 (2007).
pubmed: 18251894 doi: 10.1111/j.1399-3054.2007.00946.x
He, C. J., Davies, F. T. & Lacey, R. E. Hypobaria, hypoxia, and light affect gas exchange and the CO
doi: 10.1139/B09-031
He, C. J. & Davies, F. T. Ethylene reduces plant gas exchange and growth of lettuce grown from seed to harvest under hypobaric and ambient total pressure. J. Plant Physiol. 169, 369–378 (2012).
pubmed: 22118875 doi: 10.1016/j.jplph.2011.11.002
Tang, Y. K. et al. Effects of long-term low atmospheric pressure on gas exchange and growth of lettuce. Adv. Space Res. 46, 751–760 (2010).
doi: 10.1016/j.asr.2010.04.032
He, C. J., Davies, F. T., Lacey, R. E., Drew, M. C. & Brown, D. L. Effect of hypobaric conditions on ethylene evolution and growth of lettuce and wheat. J. Plant Physiol. 160, 1341–1350 (2003).
pubmed: 14658387 doi: 10.1078/0176-1617-01106
Tang, Y. K., Gao, F., Yu, Q. N., Guo, S. S. & Li, F. The uptake kinetics of NH
doi: 10.1016/j.scienta.2015.09.043
Rajapakse, N. C., He, C. J., Cisneros-Zevallos, L. & Davies, F. T. Hypobaria and hypoxia affects growth and phytochemical contents of lettuce. Sci. Hortic. 122, 171–178 (2009).
doi: 10.1016/j.scienta.2009.05.002
Guo, S. S., Tang, Y. K., Gao, F., Ai, W. D. & Qin, L. F. Effects of low pressure and hypoxia on growth and development of wheat. Acta Astronaut. 63, 1081–1085 (2008).
doi: 10.1016/j.actaastro.2008.02.006
Gohil, H. L., Bucklin, R. A. & Correll, M. J. The effects of CO
doi: 10.1016/j.asr.2009.11.015
Carillo, P. et al. Light spectral composition affects metabolic response and flowering in non-vernalized Ranunculus asiaticus L. Environ. Exp. Bot. 192, 104649 (2021).
doi: 10.1016/j.envexpbot.2021.104649
Vandenbrink, J. P., Kiss, J. Z., Herranz, R. & Medina, F. J. Light and gravity signals synergize in modulating plant development. Front. Plant Sci. 5, 563 (2014).
pubmed: 25389428 pmcid: 4211383 doi: 10.3389/fpls.2014.00563
Darko, E., Heydarizadeh, P., Schoefs, B. & Sabzalian, M. R. Photosynthesis under artificial light: the shift in primary and secondary metabolism. Philos. Trans. R. Soc. Lond. B Biol. Sci. 369, 20130243 (2014).
pubmed: 24591723 pmcid: 3949401 doi: 10.1098/rstb.2013.0243
Poulet, L. et al. Significant reduction in energy for plant-growth lighting in space using targeted LED lighting and spectral manipulation. Life Sci. Space Res. 2, 43–53 (2014).
doi: 10.1016/j.lssr.2014.06.002
Wang, L. et al. Transcriptomic analysis of the interaction between FLOWERING LOCUS T induction and photoperiodic signaling in response to spaceflight. Front. Cell Dev. Biol. 9, 813246 (2022).
pubmed: 35178402 pmcid: 8844200 doi: 10.3389/fcell.2021.813246
Blancaflor, E. B. et al. A Researcher’s Guide to International Space Station Plant Science. (NASA ISS Research Integration Office, 2023).
Paul, A.-L., Amalfitano, C. E. & Ferl, R. J. Plant growth strategies are remodeled by spaceflight. BMC Plant Biol. 12, 232 (2012).
pubmed: 23217113 pmcid: 3556330 doi: 10.1186/1471-2229-12-232
Sychev, V. N., Levinskikh, M. A., Gostimsky, S. A., Bingham, G. E. & Podolsky, I. G. Spaceflight effects on consecutive generations of peas grown onboard the Russian segment of the International Space Station. Acta Astronaut. 60, 426–432 (2007).
doi: 10.1016/j.actaastro.2006.09.009
Massa, G. D., Kim, H.-H., Wheeler, R. M. & Mitchell, C. A. Plant productivity in response to LED lighting. Hortscience 43, 1951–1956 (2008).
doi: 10.21273/HORTSCI.43.7.1951
Lazzarin, M. et al. LEDs make it resilient: effects on plant growth and defense. Trends Plant Sci. 26, 496–508 (2021).
pubmed: 33358304 doi: 10.1016/j.tplants.2020.11.013
Massa, G. D., Wheeler, R. M., Morrow, R. C. & Levine, H. G. In Growth Chambers on the International Space Station for Large Plants. 1134 edn. 215–222 (International Society for Horticultural Science (ISHS), Leuven, Belgium, 2016).
Monje, O. et al. Hardware validation of the advanced plant habitat on ISS: Canopy photosynthesis in reduced gravity. Front. Plant Sci. 11, 673 (2020).
pubmed: 32625217 pmcid: 7314936 doi: 10.3389/fpls.2020.00673
Millar, K. D. L. et al. A novel phototropic response to red light is revealed in microgravity. N. Phytol. 186, 648–656 (2010).
doi: 10.1111/j.1469-8137.2010.03211.x
Thoma, F., Somborn-Schulz, A., Schlehuber, D., Keuter, V. & Deerberg, G. Effects of light on secondary metabolites in selected leafy greens: a review. Front. Plant Sci. 11, 497 (2020).
pubmed: 32391040 pmcid: 7193822 doi: 10.3389/fpls.2020.00497
Kordyum, E. & Hasenstein, K. H. Plant biology for space exploration - Building on the past, preparing for the future. Life Sci. Space Res. 29, 1–7 (2021).
doi: 10.1016/j.lssr.2021.01.003
Vermeulen, A. C. J., Hubers, C., de Vries, L. & Brazier, F. What horticulture and space exploration can learn from each other: the mission to mars initiative in the Netherlands. Acta Astronaut. 177, 421–424 (2020).
doi: 10.1016/j.actaastro.2020.05.015
Fitzpatrick, C. R. et al. The plant microbiome: from ecology to reductionism and beyond. Annu. Rev. Microbiol. 74, 81–100 (2020).
pubmed: 32530732 doi: 10.1146/annurev-micro-022620-014327
Trivedi, P., Leach, J. E., Tringe, S. G., Sa, T. & Singh, B. K. Plant-microbiome interactions: from community assembly to plant health. Nat. Rev. Microbiol. 18, 607–621 (2020).
pubmed: 32788714 doi: 10.1038/s41579-020-0412-1
Bastìas, D. A., Balestrini, R., Pollmann, S. & Gundel, P. E. Environmental interference of plant-microbe interactions. Plant Cell Environ. 45, 3387–3398 (2022).
pubmed: 36180415 pmcid: 9828629 doi: 10.1111/pce.14455
Porras-Alfaro, A. & Bayman, P. Hidden fungi, emergent properties: endophytes and microbiomes. Annu. Rev. Phytopathol. 49, 291–315 (2011).
pubmed: 19400639 doi: 10.1146/annurev-phyto-080508-081831
Yan, L. et al. Beneficial effects of endophytic fungi colonization on plants. Appl. Microbiol. Biotechnol. 103, 3327–3340 (2019).
pubmed: 30847542
Renaud, C., Leys, N. & Wattiez, R. Photosynthetic microorganisms, an overview of their biostimulant effects on plants and perspectives for space agriculture. J. Plant Interact. 18, 2242697 (2023).
doi: 10.1080/17429145.2023.2242697
Udvardi, M. & Poole, P. S. Transport and metabolism in legume-rhizobia symbioses. Annu. Rev. Plant Biol. 64, 781–805 (2013).
pubmed: 23451778 doi: 10.1146/annurev-arplant-050312-120235
Lanfranco, L., Fiorilli, V. & Gutjahr, C. Partner communication and role of nutrients in the arbuscular mycorrhizal symbiosis. N. Phytol. 220, 1031–1046 (2018).
doi: 10.1111/nph.15230
Parmagnani, A. S. et al. Bacterial volatiles (mVOC) emitted by the phytopathogen Erwinia amylovora promote Arabidopsis thaliana growth and oxidative stress. Antioxidants 12, 600 (2023).
pubmed: 36978848 pmcid: 10045578 doi: 10.3390/antiox12030600
Fincheira, P. & Quiroz, A. Microbial volatiles as plant growth inducers. Microbiol. Res. 208, 63–75 (2018).
pubmed: 29551213 doi: 10.1016/j.micres.2018.01.002
Alagna, F., Balestrini, R., Chitarra, W., Marsico, A. D. & Nerva, L. in Priming-Mediated Stress and Cross-Stress Tolerance in Crop Plants (eds Md. A. Hossain et al.) 35–56 (Academic Press, 2020).
Pieterse, C. M. et al. Induced systemic resistance by beneficial microbes. Annu. Rev. Phytopathol. 52, 347–375 (2014).
pubmed: 24906124 doi: 10.1146/annurev-phyto-082712-102340
Foster, J. S., Wheeler, R. M. & Pamphile, R. Host-microbe interactions in microgravity: assessment and implications. Life 4, 250–266 (2014).
pubmed: 25370197 pmcid: 4187166 doi: 10.3390/life4020250
Fu, Y. M. et al. Change of growth promotion and disease resistant of wheat seedling by application of biocontrol bacterium Pseudochrobactrum kiredjianiae A4 under simulated microgravity. Acta Astronaut. 139, 222–227 (2017).
doi: 10.1016/j.actaastro.2017.06.022
Checinska Sielaff, A. et al. Characterization of the total and viable bacterial and fungal communities associated with the International Space Station surfaces. Microbiome 7, 50 (2019).
pubmed: 30955503 pmcid: 6452512 doi: 10.1186/s40168-019-0666-x
Schuerger, A. C. Integrated pest management protocols for space-based bioregenerative life support systems. Front. Astron. Space Sci. 8, 75964 (2021).
Pierson, D. L. Microbial contamination of spacecraft. Gravit. Space Biol. Bull. 14, 1–6 (2001).
pubmed: 11865864
Mishchenko, L., Dunich, A. & Danilova, O. Impact of a real microgravity on the productivity of tomato plants and resistance to viruses. Proceedings of the Life in Space for Life on Earth. 18–22 June 2012, at Aberdeen, UK. ESA-SP Vol. 706, Id. 48 (2013)
Bishop, D. L., Levine, H. G., Kropp, B. R. & Anderson, A. J. Seedborne fungal contamination: consequences in space-grown wheat. Phytopathology 87, 1125–1133 (1997).
pubmed: 11540734 doi: 10.1094/PHYTO.1997.87.11.1125
Ryba-White, M. et al. Growth in microgravity increases susceptibility of soybean to a fungal pathogen. Plant Cell Physiol. 42, 657–664 (2001).
pubmed: 11427686 doi: 10.1093/pcp/pce082
Massa, G. D. et al. VEG-01: Veggie hardware validation testing on the International Space Station. Open Agriculture 2, 33–41 (2017).
doi: 10.1515/opag-2017-0003
Schuerger, A. C. et al. Fusarium oxysporum as an opportunistic fungal pathogen on Zinnia hybrida plants grown on board the International Space Station. Astrobiology 21, 1029–1048 (2021).
pubmed: 33926205 doi: 10.1089/ast.2020.2399
Khodadad, C. L. M. et al. Microbiological and nutritional analysis of lettuce crops grown on the International Space Station. Front. Plant Sci. 11, 199 (2020).
pubmed: 32210992 pmcid: 7067979 doi: 10.3389/fpls.2020.00199
Chialva, M., Lanfranco, L. & Bonfante, P. The plant microbiota: composition, functions, and engineering. Curr. Opin. Biotechnol. 73, 135–142 (2022).
pubmed: 34392234 doi: 10.1016/j.copbio.2021.07.003
Teixeira, P. et al. Specific modulation of the root immune system by a community of commensal bacteria. Proc. Natl Acad. Sci. USA 118, e2100678118 (2021).
pubmed: 33879573 pmcid: 8072228 doi: 10.1073/pnas.2100678118
Salas-González, I. et al. Coordination between microbiota and root endodermis supports plant mineral nutrient homeostasis. Science 371, eabd0695 (2021).
pubmed: 33214288 doi: 10.1126/science.abd0695
Santoyo, G., Moreno-Hagelsieb, G., Orozco-Mosqueda Mdel, C. & Glick, B. R. Plant growth-promoting bacterial endophytes. Microbiol. Res. 183, 92–99 (2016).
pubmed: 26805622 doi: 10.1016/j.micres.2015.11.008
Roy, S. et al. Celebrating 20 years of genetic discoveries in legume nodulation and symbiotic nitrogen fixation. Plant Cell 32, 15–41 (2020).
pubmed: 31649123 doi: 10.1105/tpc.19.00279
Blake, C., Christensen, M. N. & Kovács, Á.T. Molecular aspects of plant growth promotion and protection by Bacillus subtilis. Mol. Plant Microbe Interact. 34, 15–25 (2021).
pubmed: 32986513 doi: 10.1094/MPMI-08-20-0225-CR
Bastias, D. A., Martínez-Ghersa, M. A., Ballaré, C. L. & Gundel, P. E. Epichloë fungal endophytes and plant defenses: not just alkaloids. Trends Plant Sci. 22, 939–948 (2017).
pubmed: 28923242 doi: 10.1016/j.tplants.2017.08.005
Lorito, M., Woo, S. L., Harman, G. E. & Monte, E. Translational research on Trichoderma: from ‘omics to the field. Annu. Rev. Phytopathol. 48, 395–417 (2010).
pubmed: 20455700 doi: 10.1146/annurev-phyto-073009-114314
Genre, A., Lanfranco, L., Perotto, S. & Bonfante, P. Unique and common traits in mycorrhizal symbioses. Nat. Rev. Microbiol. 18, 649–660 (2020).
pubmed: 32694620 doi: 10.1038/s41579-020-0402-3
Koehle, A. P., Brumwell, S. L., Seto, E. P., Lynch, A. M. & Urbaniak, C. Microbial applications for sustainable space exploration beyond low Earth orbit. NPJ Microgravity 9, 47 (2023).
pubmed: 37344487 pmcid: 10284894 doi: 10.1038/s41526-023-00285-0
Hummerick, M. E. et al. Spatial characterization of microbial communities on multi-species leafy greens grown simultaneously in the vegetable production systems on the International Space Station. Life 11, 1060 (2021).
pubmed: 34685431 pmcid: 8537831 doi: 10.3390/life11101060
Harris, F., Dobbs, J., Atkins, D., Ippolito, J. A. & Stewart, J. E. Soil fertility interactions with Sinorhizobium-legume symbiosis in a simulated Martian regolith; effects on nitrogen content and plant health. PLoS One 16, e0257053 (2021).
pubmed: 34587163 pmcid: 8480890 doi: 10.1371/journal.pone.0257053
Dauzart, A. J. C., Vandenbrink, J. P. & Kiss, J. Z. The effects of clinorotation on the host plant, Medicago truncatula, and its microbial symbionts. Front. Astron. Space Sci. 3, 3 (2016).
Liu, G. et al. Simulated microgravity and the antagonistic influence of strigolactone on plant nutrient uptake in low nutrient conditions. NPJ Microgravity 4, 20 (2018).
pubmed: 30345347 pmcid: 6193021 doi: 10.1038/s41526-018-0054-z
Nerva, L. et al. Breeding toward improved ecological plant-microbiome interactions. Trends Plant Sci. 27, 1134–1143 (2022).
pubmed: 35803843 doi: 10.1016/j.tplants.2022.06.004
Parasyri, A. et al. Lichen as micro-ecosystem: extremophilic behavior with astrobiotechnological applications. Astrobiology 18, 1528–1542 (2018).
pubmed: 30383392 doi: 10.1089/ast.2017.1789
Massa, G. D., Newsham, G., Hummerick, M. E., Morrow, R. C. & Wheeler, R. M. Plant pillow preparation for the veggie plant growth system on the International Space Station. Gravitat. Space Res. 5, 24–34 (2017).
doi: 10.2478/gsr-2017-0002
Baron, D., Amaro, A. C. E., Campos, F. G., Boaro, C. S. F. & Ferreira, G. in Plant Metabolites and Regulation Under Environmental Stress (eds Ahmad, P. et al.) 415–425 (Academic Press, 2018).
Li, Q., Li, X., Tang, B. & Gu, M. Growth responses and root characteristics of lettuce grown in aeroponics, hydroponics, and substrate culture. Horticulturae 4, 35 (2018).
doi: 10.3390/horticulturae4040035
Kyriacou, M. C. et al. Phenolic constitution, phytochemical and macronutrient content in three species of microgreens as modulated by natural fiber and synthetic substrates. Antioxidants 9, 252 (2020).
pubmed: 32244953 pmcid: 7139710 doi: 10.3390/antiox9030252
Ming, D. W. & Henninger, D. L. Use of lunar regolith as a substrate for plant growth. Adv. Space Res. 14, 435–443 (1994).
pubmed: 11538023 doi: 10.1016/0273-1177(94)90333-6
Wamelink, G. W., Frissel, J. Y., Krijnen, W. H., Verwoert, M. R. & Goedhart, P. W. Can plants grow on Mars and the moon: a growth experiment on Mars and moon soil simulants. PLoS One 9, e103138 (2014).
pubmed: 25162657 pmcid: 4146463 doi: 10.1371/journal.pone.0103138
Yao, Z., Feng, J. & Liu, H. Bioweathering improvement of lunar soil simulant improves the cultivated wheat’s seedling length. Acta Astronaut. 193, 1–8 (2022).
doi: 10.1016/j.actaastro.2021.12.055
Wamelink, G., Frissel, J., Krijnen, W. & Verwoert, M. in Terraforming Mars, 313–329 (Wiley, 2021).
Paul, A.-L., Elardo, S. M. & Ferl, R. Plants grown in Apollo lunar regolith present stress-associated transcriptomes that inform prospects for lunar exploration. Commun. Biol. 5, 382 (2022).
pubmed: 35552509 pmcid: 9098553 doi: 10.1038/s42003-022-03334-8
Caporale, A. G. et al. Green compost amendment improves potato plant performance on Mars regolith simulant as substrate for cultivation in space. Plant Soil 486, 217–233 (2023).
doi: 10.1007/s11104-022-05860-0
Duri, L. G. et al. The potential for lunar and martian regolith simulants to sustain plant growth: a multidisciplinary overview. Front. Astron. Space Sci. 8, 747821 (2022).
Paradiso, R. et al. Design of a module for cultivation of tuberous plants in microgravity: The ESA project “Precursor of Food Production Unit” (PFPU). Front. Plant Sci. 11, 417 (2020).
pubmed: 32499789 pmcid: 7242650 doi: 10.3389/fpls.2020.00417
Takeuchi, Y. 3D printable hydroponics: a digital fabrication pipeline for soilless plant cultivation. IEEE Access 7, 35863–35873 (2019).
doi: 10.1109/ACCESS.2019.2905233
Brinkert, K., Zhuang, C. P., Escriba-Gelonch, M. & Hessel, V. The potential of catalysis for closing the loop in human space exploration. Catal. Today 423, 114242 (2023).
doi: 10.1016/j.cattod.2023.114242
Zandalinas, S. I. et al. The impact of multifactorial stress combination on plant growth and survival. N. Phytologist 230, 1034–1048 (2021).
doi: 10.1111/nph.17232
Ferranti, F., Del Bianco, M. & Pacelli, C. Advantages and limitations of current microgravity platforms for space biology research. Appl. Sci. 11, 68 (2021).
doi: 10.3390/app11010068
Huff, J. L. et al. Galactic cosmic ray simulation at the NASA space radiation laboratory—progress, challenges and recommendations on mixed-field effects. Life Sci. Space Res. 36, 90–104 (2023).
doi: 10.1016/j.lssr.2022.09.001
Land, E. S., Canaday, E., Meyers, A., Wyatt, S. & Perera, I. Y. Bridging the gap: parallel profiling of ribosome associated and total RNA species can identify transcriptional regulatory mechanisms of plants in spaceflight. J. Plant Interact. 18, 2248173 (2023).
doi: 10.1080/17429145.2023.2248173

Auteurs

Massimo E Maffei (ME)

Department of Life Sciences and Systems Biology, Plant Physiology Unit, University of Turin, Via Quarello 15/a, 10135, Turin, Italy.

Raffaella Balestrini (R)

Institute of Biosciences and Bioresources, Via Amendola 165/A, 70126, Bari, Italy.

Paolo Costantino (P)

Department of Biology and Biotechnology "C. Darwin", University of Rome "Sapienza", Piazzale Aldo Moro 5, 00185, Rome, Italy.

Luisa Lanfranco (L)

Department of Life Sciences and Systems Biology, University of Turin, Viale Mattioli 25, 10125, Turin, Italy.

Michele Morgante (M)

Institute of Applied Genomics, University of Udine, Via Jacopo Linussio 51, 33100, Udine, Italy.

Alberto Battistelli (A)

Research Institute on Terrestrial Ecosystems (IRET), National Research Council, Viale Guglielmo Marconi 2, 05010, Porano, Italy.

Marta Del Bianco (M)

Italian Space Agency, Viale del Politecnico s.n.c., 00133, Rome, Italy. marta.delbianco@asi.it.
Centre for Space Life Sciences, Viale Regina Elena, 299, 00161, Roma, Italy. marta.delbianco@asi.it.

Articles similaires

Drought Resistance Gene Expression Profiling Gene Expression Regulation, Plant Gossypium Multigene Family
Fragaria Light Plant Leaves Osmosis Stress, Physiological
Citrus Phenylalanine Ammonia-Lyase Stress, Physiological Multigene Family Phylogeny
Soil Charcoal Nutrients Manure Nitrogen

Classifications MeSH