The physiology of plants in the context of space exploration.
Journal
Communications biology
ISSN: 2399-3642
Titre abrégé: Commun Biol
Pays: England
ID NLM: 101719179
Informations de publication
Date de publication:
11 Oct 2024
11 Oct 2024
Historique:
received:
30
11
2023
accepted:
30
09
2024
medline:
12
10
2024
pubmed:
12
10
2024
entrez:
11
10
2024
Statut:
epublish
Résumé
The stress that the space environment can induce on plant physiology is of both abiotic and biotic nature. The abiotic space environment is characterized by ionizing radiation and altered gravity, geomagnetic field (GMF), pressure, and light conditions. Biotic interactions include both pathogenic and beneficial interactions. Here, we provide an overall picture of the effects of abiotic and biotic space-related factors on plant physiology. The knowledge required for the success of future space missions will lead to a better understanding of fundamental aspects of plant physiological responses, thus providing useful tools for plant breeding and agricultural practices on Earth.
Identifiants
pubmed: 39394270
doi: 10.1038/s42003-024-06989-7
pii: 10.1038/s42003-024-06989-7
doi:
Types de publication
Journal Article
Review
Langues
eng
Sous-ensembles de citation
IM
Pagination
1311Informations de copyright
© 2024. The Author(s).
Références
Angelopoulos, V. The ARTEMIS mission. Space Sci. Rev. 165, 3–25 (2011).
doi: 10.1007/s11214-010-9687-2
Binot, R. A., Tamponnet, C. & Lasseur, C. in Life Sciences and Space Research XXV. Vol. 14 Advances in Space Research (eds. MacElroy, R. D. et al.) 71–74 (Pergamon Press Ltd, 1994).
Bunchek, J. M. et al. Pick-and-eat space crop production flight testing on the International Space Station. J. Plant Interact. 19, 2292220 (2024).
doi: 10.1080/17429145.2023.2292220
Wheeler, R. M. et al. Effects of elevated and super-elevated carbon dioxide on salad crops for space. J. Plant Interact. 19, 2292219 (2024).
doi: 10.1080/17429145.2023.2292219
De Pascale, S. et al. Biology and crop production in Space environments: challenges and opportunities. Life Sci. Space Res. 29, 30–37 (2021).
doi: 10.1016/j.lssr.2021.02.005
Morita, M. T. & Tasaka, M. Gravity sensing and signaling. Curr. Opin. Plant Biol. 7, 712–718 (2004).
pubmed: 15491921
doi: 10.1016/j.pbi.2004.09.001
Fukaki, H. et al. Genetic evidence that the endodermis is essential for shoot gravitropism in Arabidopsis thaliana. Plant J. 14, 425–430 (1998).
pubmed: 9670559
doi: 10.1046/j.1365-313X.1998.00137.x
MacCleery, S. A. & Kiss, J. Z. Plastid sedimentation kinetics in roots of wild-type and starch-deficient mutants of Arabidopsis. Plant Physiol. 120, 183–192 (1999).
pubmed: 10318696
pmcid: 59250
doi: 10.1104/pp.120.1.183
Tasaka, M., Kato, T. & Fukaki, H. The endodermis and shoot gravitropism. Trends Plant Sci. 4, 103–107 (1999).
pubmed: 10322541
doi: 10.1016/S1360-1385(99)01376-X
Ottenschlager, I. et al. Gravity-regulated differential auxin transport from columella to lateral root cap cells. Proc. Natl Acad. Sci. USA 100, 2987–2991 (2003).
pubmed: 12594336
pmcid: 151453
doi: 10.1073/pnas.0437936100
Herranz, R. & Medina, F. J. Cell proliferation and plant development under novel altered gravity environments. Plant Biol. 16 Suppl 1, 23–30 (2014).
pubmed: 24112664
doi: 10.1111/plb.12103
Morris, E. C. et al. Shaping 3D root system architecture. Curr. Biol. 27, R919–R930 (2017).
pubmed: 28898665
doi: 10.1016/j.cub.2017.06.043
Roychoudhry, S. & Kepinski, S. Things fall into place: how plants sense and respond to gravity. Nature 631, 745–747 (2024).
pubmed: 39020186
doi: 10.1038/d41586-024-01747-5
Chen, J. et al. Amyloplast sedimentation repolarizes LAZYs to achieve gravity sensing in plants. Cell 186, 4788–4802.e4715 (2023).
pubmed: 37741279
doi: 10.1016/j.cell.2023.09.014
Nishimura, T. et al. Cell polarity linked to gravity sensing is generated by LZY translocation from statoliths to the plasma membrane. Science 381, 1006–1010 (2023).
pubmed: 37561884
doi: 10.1126/science.adh9978
Bai, Q. et al. Molecular mechanism of brassinosteroids involved in root gravity response based on transcriptome analysis. BMC Plant Biol. 24, 485 (2024).
pubmed: 38822229
pmcid: 11143716
doi: 10.1186/s12870-024-05174-6
Huang, S.-J. et al. A type III ACC synthase, ACS7, is involved in root gravitropism in Arabidopsis thaliana. J. Exp. Bot. 64, 4343–4360 (2013).
pubmed: 23943848
pmcid: 3808318
doi: 10.1093/jxb/ert241
Löfke, C. et al. Asymmetric gibberellin signaling regulates vacuolar trafficking of PIN auxin transporters during root gravitropism. Proc. Natl Acad. Sci. USA 110, 3627–3632 (2013).
pubmed: 23391733
pmcid: 3587205
doi: 10.1073/pnas.1300107110
Gutjahr, C. et al. Cholodny-Went revisited: a role for jasmonate in gravitropism of rice coleoptiles. Planta 222, 575–585 (2005).
pubmed: 16047199
doi: 10.1007/s00425-005-0001-6
Yoder, T. L., Zheng, H. Q., Todd, P. & Staehelin, L. A. Amyloplast sedimentation dynamics in maize columella cells support a new model for the gravity-sensing apparatus of roots. Plant Physiol. 125, 1045–1060 (2001).
pubmed: 11161060
pmcid: 64904
doi: 10.1104/pp.125.2.1045
Wyatt, S. E. & Kiss, J. Z. Plant tropisms: from Darwin to the International Space Station. Am. J. Bot. 100, 1–3 (2013).
pubmed: 23281390
doi: 10.3732/ajb.1200591
Chauvet, H., Pouliquen, O., Forterre, Y., Legué, V. & Moulia, B. Inclination not force is sensed by plants during shoot gravitropism. Sci. Rep. 6, 35431 (2016).
pubmed: 27739470
pmcid: 5064399
doi: 10.1038/srep35431
Kordyum, E. L. Plant cell gravisensitivity and adaptation to microgravity. Plant Biol. 16 Suppl 1, 79–90 (2014).
pubmed: 23731198
doi: 10.1111/plb.12047
Nedukha, E. M. Effects of microgravity on the structure and function of plant cell walls. Int. Rev. Cytol. 170, 39–77 (1997).
pubmed: 11536785
doi: 10.1016/S0074-7696(08)61620-4
Brykov, V. A., Generozova, I. P. & Shugaev, A. G. Ultrastructure and metabolic activity of pea mitochondria under clinorotation. Tsitol. Genet. 46, 20–26 (2012).
pubmed: 22856142
Stutte, G. W., Monje, O., Goins, G. D. & Tripathy, B. C. Microgravity effects on thylakoid, single leaf, and whole canopy photosynthesis of dwarf wheat. Planta 223, 46–56 (2005).
pubmed: 16160842
doi: 10.1007/s00425-005-0066-2
Kalinina, I. Microtubules spatial alterations in root cells of Brassica rapa under clinorotation. Cell. Biol. Int. 32, 581–583 (2008).
pubmed: 18155615
doi: 10.1016/j.cellbi.2007.11.003
Romanchuk, S. M. Ultrastructure of statocytes and cells of distal elongation zone of Arabidopsis thaliana under clinorotation. Tsitol. Genet. 44, 3–8 (2010).
pubmed: 21254615
Mugnai, S. et al. Oxidative stress and NO signalling in the root apex as an early response to changes in gravity conditions. Biomed. Res. Int. 2014, 834134 (2014).
pubmed: 25197662
pmcid: 4150467
doi: 10.1155/2014/834134
Kozeko, L. Y. & Kordyum, E. L. Heat shock proteins HSP70 and HSP90 in pea seedlings under clinorotation of different duration. J. Gravit. Physiol. 14, 115–116 (2007).
Medina, F. J. & Herranz, R. Microgravity environment uncouples cell growth and cell proliferation in root meristematic cells: the mediator role of auxin. Plant Signal. Behav. 5, 176–179 (2010).
pubmed: 20173415
pmcid: 2884128
doi: 10.4161/psb.5.2.10966
Manzano, A. I., Herranz, R., Manzano, A., van Loon, J. J. W. A. & Medina, F. J. Early effects of altered gravity environments on plant cell growth and cell proliferation: characterization of morphofunctional nucleolar types in an Arabidopsis cell culture system. Front. Astron. Space Sci. 3, 2 (2016).
Chebli, Y. et al. Cell wall assembly and intracellular trafficking in plant cells are directly affected by changes in the magnitude of gravitational acceleration. PLoS One 8, e58246 (2013).
pubmed: 23516452
pmcid: 3596410
doi: 10.1371/journal.pone.0058246
Karahara, I. et al. Vegetative and reproductive growth of Arabidopsis under microgravity conditions in space. J. Plant Res. 133, 571–585 (2020).
pubmed: 32424466
doi: 10.1007/s10265-020-01200-4
Manzano, A. et al. Novel, Moon and Mars, partial gravity simulation paradigms and their effects on the balance between cell growth and cell proliferation during early plant development. NPJ Microgravity 4, 9 (2018).
pubmed: 29644337
pmcid: 5884789
doi: 10.1038/s41526-018-0041-4
Jia, Y. & Lin, Z. W. The radiation environment on the Moon from galactic cosmic rays in a lunar habitat. Radiat. Res. 173, 238–244 (2010).
pubmed: 20095856
doi: 10.1667/RR1846.1
Dobynde, M. I., Shprits, Y. Y., Drozdov, A. Y., Hoffman, J. & Li, J. Beating 1 Sievert: optimal radiation shielding of astronauts on a mission to Mars. Space Weather 19, e2021SW002749 (2021).
Puchta, H. The repair of double-strand breaks in plants: mechanisms and consequences for genome evolution. J. Exp. Bot. 56, 1–14 (2005).
pubmed: 15557293
Bennetzen, J. L. & Wang, H. The contributions of transposable elements to the structure, function, and evolution of plant genomes. Annu. Rev. Plant Biol. 65, 505–530 (2014).
pubmed: 24579996
doi: 10.1146/annurev-arplant-050213-035811
Alzohairy, A. M. et al. Environmental stress activation of plant long-terminal repeat retrotransposons. Funct. Plant Biol. 41, 557–567 (2014).
pubmed: 32481013
doi: 10.1071/FP13339
Caplin, N. & Willey, N. Ionizing radiation, higher plants, and radioprotection: from acute high doses to chronic low doses. Front. Plant Sci. 9, 847 (2018).
pubmed: 29997637
pmcid: 6028737
doi: 10.3389/fpls.2018.00847
Arena, C., De Micco, V., Macaeva, E. & Quintens, R. Space radiation effects on plant and mammalian cells. Acta Astronaut. 104, 419–431 (2014).
doi: 10.1016/j.actaastro.2014.05.005
De Micco, V., Arena, C., Pignalosa, D. & Durante, M. Effects of sparsely and densely ionizing radiation on plants. Radiat. Environ. Biophys. 50, 1–19 (2011).
pubmed: 21113610
doi: 10.1007/s00411-010-0343-8
Mousseau, T. A. & Moller, A. P. Plants in the light of ionizing radiation: What have we learned from Chernobyl, Fukushima, and other “hot” places? Front. Plant Sci. 11, 9 (2020).
doi: 10.3389/fpls.2020.00552
Gudkov, S. V., Grinberg, M. A., Sukhov, V. & Vodeneev, V. Effect of ionizing radiation on physiological and molecular processes in plants. J. Environ. Radioact. 202, 8–24 (2019).
pubmed: 30772632
doi: 10.1016/j.jenvrad.2019.02.001
De Francesco, S. et al. Growth, anatomical, and biochemical responses of the space farming Candidate Brassica rapa L. Microgreens to low-LET ionizing radiation. Horticulturae 9, 452 (2023).
doi: 10.3390/horticulturae9040452
Vitale, E. et al. Light quality modulates photosynthesis and antioxidant properties of B. vulgaris L. plants from seeds irradiated with high-energy heavy ions: implications for cultivation in space. Plants 11, 18 (2022).
doi: 10.3390/plants11141816
Mulinacci, N. et al. Effects of ionizing radiation on bio-active plant extracts useful for preventing oxidative damages. Nat. Prod. Res. 33, 1106–1114 (2019).
pubmed: 29607691
doi: 10.1080/14786419.2018.1457663
Horemans, N. et al. Current evidence for a role of epigenetic mechanisms in response to ionizing radiation in an ecotoxicological context. Environ. Pollut. 251, 469–483 (2019).
pubmed: 31103007
doi: 10.1016/j.envpol.2019.04.125
De Micco, V., Arena, C., Di Fino, L. & Narici, L. Radiation environment in exploration-class space missions and plants’ responses relevant for cultivation in bioregenerative life support systems. Front. Plant Sci. 13, 17 (2022).
doi: 10.3389/fpls.2022.1001158
da Silva, J. A. T. & Dobranszki, J. Magnetic fields: how is plant growth and development impacted? Protoplasma 253, 231–248 (2016).
pubmed: 25952081
doi: 10.1007/s00709-015-0820-7
Radhakrishnan, R. Magnetic field regulates plant functions, growth and enhances tolerance against environmental stresses. Physiol. Mol. Biol. Plants 25, 1107–1119 (2019).
pubmed: 31564775
pmcid: 6745571
doi: 10.1007/s12298-019-00699-9
Sarraf, M. et al. Effect of magnetopriming on photosynthetic performance of plants. Int. J. Mol. Sci. 22, 14 (2021).
doi: 10.3390/ijms22179353
Maffei, M. E. in Bioelectromagnetism. History, Foundations and Applications (eds U. Shoogo & S. Tsukasa) Ch. 5, 191–214 (CRC Press, 2022).
Guo, J. P., Wan, H. Y., Matysik, J. & Wang, X. J. Recent advances in magnetosensing cryptochrome model systems. Acta Chim. Sin. 76, 597–604 (2018).
doi: 10.6023/A18040173
Hore, P. J. & Mouritsen, H. The radical-pair mechanism of magnetoreception. Annu. Rev. Biophys. 45, 299–344 (2016).
pubmed: 27216936
doi: 10.1146/annurev-biophys-032116-094545
Golesworthy, M. J. et al. Singlet-triplet dephasing in radical pairs in avian cryptochromes leads to time-dependent magnetic field effects. J. Chem. Phys. 159, 11 (2023).
doi: 10.1063/5.0166675
Pooam, M. et al. Magnetic sensitivity mediated by the Arabidopsis blue-light receptor cryptochrome occurs during flavin reoxidation in the dark. Planta 249, 319–332 (2019).
pubmed: 30194534
doi: 10.1007/s00425-018-3002-y
Hammad, M. et al. Cryptochrome mediated magnetic sensitivity in Arabidopsis occurs independently of light-induced electron transfer to the flavin. Photochem. Photobiol. Sci. 19, 341–352 (2020).
pubmed: 32065192
doi: 10.1039/c9pp00469f
Parmagnani, A. S., D’Alessandro, S. & Maffei, M. E. Iron-sulfur complex assembly: potential players of magnetic induction in plants. Plant Sci. 325, 111483 (2022).
pubmed: 36183809
doi: 10.1016/j.plantsci.2022.111483
Qin, S. et al. A magnetic protein biocompass. Nat. Mater. 15, 217–226 (2016).
pubmed: 26569474
doi: 10.1038/nmat4484
Yang, P. L. et al. A rationally designed building block of the putative magnetoreceptor MagR. Bioelectromagnetics 43, 317–326 (2022).
pubmed: 35598081
doi: 10.1002/bem.22413
Zhou, Y. J. et al. Towards magnetism in pigeon MagR: Iron- and iron- sulfur binding work indispensably and synergistically. Zool. Res. 44, 142–152 (2023).
pubmed: 36484226
pmcid: 9841195
doi: 10.24272/j.issn.2095-8137.2022.423
Guo, Z. et al. Modulation of MagR magnetic properties via iron–sulfur cluster binding. Sci. Rep. 11, 23941 (2021).
pubmed: 34907239
pmcid: 8671422
doi: 10.1038/s41598-021-03344-2
Occhipinti, A., De Santis, A. & Maffei, M. E. Magnetoreception: an unavoidable step for plant evolution? Trends Plant Sci. 19, 1–4 (2014).
pubmed: 24238701
doi: 10.1016/j.tplants.2013.10.007
Hori, K., Nilsson, A. & Tobias, S. M. Waves in planetary dynamos. Rev. Mod. Plasma Phys. 7, 5 (2023).
pubmed: 36588584
doi: 10.1007/s41614-022-00104-1
Teixeira da Silva, J. A. & Dobranszki, J. How do magnetic fields affect plants in vitro? Vitr. Cell Dev. Biol. Plant 51, 233–240 (2015).
doi: 10.1007/s11627-015-9675-z
Bertea, C. M., Narayana, R., Agliassa, C., Rodgers, C. T. & Maffei, M. E. Geomagnetic field (Gmf) and plant evolution: investigating the effects of Gmf reversal on Arabidopsis thaliana development and gene expression. J. Vis. Exp. 105, 53286 (2015).
Paponov, I. A., Fliegmann, J., Narayana, R. & Maffei, M. E. Differential root and shoot magnetoresponses in Arabidopsis thaliana. Sci. Rep. 11, 14 (2021).
doi: 10.1038/s41598-021-88695-6
Parmagnani, A. S., Mannino, G. & Maffei, M. E. Transcriptomics and metabolomics of reactive oxygen species modulation in near-null magnetic field-induced Arabidopsis thaliana. Biomolecules 12, 1824 (2022).
pubmed: 36551252
pmcid: 9775259
doi: 10.3390/biom12121824
Parmagnani, A. S. et al. The Geomagnetic Field (GMF) is required for Lima bean photosynthesis and reactive oxygen species production. Int. J. Mol. Sci. 24, 2896 (2023).
pubmed: 36769217
pmcid: 9917513
doi: 10.3390/ijms24032896
Agliassa, C., Narayana, R., Christie, J. M. & Maffei, M. E. Geomagnetic field impacts on cryptochrome and phytochrome signaling. J. Photochem. Photobiol. B-Biol. 185, 32–40 (2018).
doi: 10.1016/j.jphotobiol.2018.05.027
Vigani, G., Islam, M., Cavallaro, V., Nocito, F. F. & Maffei, M. E. Geomagnetic field (GMF)-dependent modulation of iron-sulfur interplay in Arabidopsis thaliana. Int. J. Mol. Sci. 22, 15 (2021).
doi: 10.3390/ijms221810166
Islam, M., Maffei, M. E. & Vigani, G. The geomagnetic field is a contributing factor for an efficient iron uptake in Arabidopsis thaliana. Front. Plant Sci. 11, 15 (2020).
doi: 10.3389/fpls.2020.00325
Agliassa, C. & Maffei, M. E. Reduction of geomagnetic field (GMF) to near null magnetic field (NNMF) affects some Arabidopsis thaliana clock genes amplitude in a light independent manner. J. Plant Physiol. 232, 23–26 (2019).
pubmed: 30530200
doi: 10.1016/j.jplph.2018.11.008
Rosen, A. D. Mechanism of action of moderate-intensity static magnetic fields on biological systems. Cell. Biochem. Biophys. 39, 163–173 (2003).
pubmed: 14515021
doi: 10.1385/CBB:39:2:163
Denegre, J. M., Valles, J. M. Jr., Lin, K., Jordan, W. B. & Mowry, K. L. Cleavage planes in frog eggs are altered by strong magnetic fields. Proc. Natl Acad. Sci. USA 95, 14729–14732 (1998).
pubmed: 9843957
pmcid: 24517
doi: 10.1073/pnas.95.25.14729
Valiron, O. et al. Cellular disorders induced by high magnetic fields. J. Magn. Reson. Imaging 22, 334–340 (2005).
pubmed: 16106367
doi: 10.1002/jmri.20398
Paul, A. L., Wheeler, R. M., Levine, H. G. & Ferl, R. J. Fundamental plant biology enabled by the space shuttle. Am. J. Bot. 100, 226–234 (2013).
pubmed: 23281389
doi: 10.3732/ajb.1200338
Penuelas, J., Llusia, J., Martinez, B. & Fontcuberta, J. Diamagnetic susceptibility and root growth responses to magnetic fields in Lens culinaris, Glycine soja, and Triticum aestivum. Electromag. Biol. Med. 23, 97–112 (2004).
doi: 10.1081/LEBM-200032772
Xu, C., Li, Y., Yu, Y., Zhang, Y. & Wei, S. Suppression of Arabidopsis flowering by near-null magnetic field is affected by light. Bioelectromagnetics 36, 476–479 (2015).
pubmed: 26095447
doi: 10.1002/bem.21927
Jaworska, M., Domanski, J., Tomasik, P. & Znoj, K. Stimulation of pathogenicity and growth of entomopathogenic fungi with static magnetic field. J. Plant Dis. Prot. 123, 295–300 (2016).
doi: 10.1007/s41348-016-0035-y
Nagy, P. & Fischl, G. Effect of static magnetic field on growth and sporulation of some plant pathogenic fungi. Bioelectromagnetics 25, 316–318 (2004).
pubmed: 15114642
doi: 10.1002/bem.20015
Fiorillo, A. et al. 14-3-3 proteins and the plasma membrane H+-ATPase are involved in maize (Zea mays) magnetic induction. Plants 12, 2887 (2023).
pubmed: 37571041
pmcid: 10421175
doi: 10.3390/plants12152887
Hore, P. J., Ivanov, K. L. & Wasielewski, M. R. Spin chemistry. J. Chem. Phys. 152, 120401 (2020).
pubmed: 32241144
doi: 10.1063/5.0006547
Drysdale, A. E. Life support trade studies involving plants. SAE Tech. Pap. 2001, 2362 (2001).
Paul, A. L. et al. Hypobaric biology: Arabidopsis gene expression at low atmospheric pressure. Plant Physiol. 134, 215–223 (2004).
pubmed: 14701916
pmcid: 316301
doi: 10.1104/pp.103.032607
Paul, A. L. et al. Patterns of Arabidopsis gene expression in the face of hypobaric stress. AoB Plants 9, 19 (2017).
doi: 10.1093/aobpla/plx030
Zhou, M. Q. et al. Dissecting low atmospheric pressure stress: Transcriptome responses to the components of hypobaria in Arabidopsis. Front. Plant Sci. 8, 528 (2017).
pubmed: 28443120
pmcid: 5385376
doi: 10.3389/fpls.2017.00528
Bauer, H. et al. The stomatal response to reduced relative humidity requires guard cell-autonomous ABA synthesis. Curr. Biol. 23, 53–57 (2013).
pubmed: 23219726
doi: 10.1016/j.cub.2012.11.022
Monje, O. & Bugbee, B. Adaptation to high CO
pubmed: 11543216
doi: 10.1046/j.1365-3040.1998.00284.x
Arce, C. C. M., Bont, Z., Machado, R. A. R., Cristaldo, P. F. & Erb, M. Adaptations and responses of the common dandelion to low atmospheric pressure in high-altitude environments. J. Ecol. 109, 3487–3501 (2021).
doi: 10.1111/1365-2745.13736
Musgrave, M. E., Gerth, W. A., Scheld, H. W. & Strain, B. R. Growth and mitochondrial respiration of mungbeans (Phaseolus aureus Roxb) germinated at low-pressure. Plant Physiol. 86, 19–22 (1988).
pubmed: 11538232
pmcid: 1054420
doi: 10.1104/pp.86.1.19
Astafurova, T. P., Vaishlya, O. B., Verkhoturova, G. S., Zaitseva, T. A. & Chirkova, T. V. Effect of hypobaric hypoxia on photosynthetic and respiratory metabolism of plants. Sov. Plant Physiol. 37, 524–529 (1990).
Richards, J. T. et al. Exposure of Arabidopsis thaliana to hypobaric environments: Implications for low-pressure bioregenerative life support systems for human exploration missions and terraforming on Mars. Astrobiology 6, 851–866 (2006).
pubmed: 17155885
doi: 10.1089/ast.2006.6.851
He, C. J., Davies, F. T. & Lacey, R. E. Separating the effects of hypobaria and hypoxia on lettuce: growth and gas exchange. Physiol. Plant. 131, 226–240 (2007).
pubmed: 18251894
doi: 10.1111/j.1399-3054.2007.00946.x
He, C. J., Davies, F. T. & Lacey, R. E. Hypobaria, hypoxia, and light affect gas exchange and the CO
doi: 10.1139/B09-031
He, C. J. & Davies, F. T. Ethylene reduces plant gas exchange and growth of lettuce grown from seed to harvest under hypobaric and ambient total pressure. J. Plant Physiol. 169, 369–378 (2012).
pubmed: 22118875
doi: 10.1016/j.jplph.2011.11.002
Tang, Y. K. et al. Effects of long-term low atmospheric pressure on gas exchange and growth of lettuce. Adv. Space Res. 46, 751–760 (2010).
doi: 10.1016/j.asr.2010.04.032
He, C. J., Davies, F. T., Lacey, R. E., Drew, M. C. & Brown, D. L. Effect of hypobaric conditions on ethylene evolution and growth of lettuce and wheat. J. Plant Physiol. 160, 1341–1350 (2003).
pubmed: 14658387
doi: 10.1078/0176-1617-01106
Tang, Y. K., Gao, F., Yu, Q. N., Guo, S. S. & Li, F. The uptake kinetics of NH
doi: 10.1016/j.scienta.2015.09.043
Rajapakse, N. C., He, C. J., Cisneros-Zevallos, L. & Davies, F. T. Hypobaria and hypoxia affects growth and phytochemical contents of lettuce. Sci. Hortic. 122, 171–178 (2009).
doi: 10.1016/j.scienta.2009.05.002
Guo, S. S., Tang, Y. K., Gao, F., Ai, W. D. & Qin, L. F. Effects of low pressure and hypoxia on growth and development of wheat. Acta Astronaut. 63, 1081–1085 (2008).
doi: 10.1016/j.actaastro.2008.02.006
Gohil, H. L., Bucklin, R. A. & Correll, M. J. The effects of CO
doi: 10.1016/j.asr.2009.11.015
Carillo, P. et al. Light spectral composition affects metabolic response and flowering in non-vernalized Ranunculus asiaticus L. Environ. Exp. Bot. 192, 104649 (2021).
doi: 10.1016/j.envexpbot.2021.104649
Vandenbrink, J. P., Kiss, J. Z., Herranz, R. & Medina, F. J. Light and gravity signals synergize in modulating plant development. Front. Plant Sci. 5, 563 (2014).
pubmed: 25389428
pmcid: 4211383
doi: 10.3389/fpls.2014.00563
Darko, E., Heydarizadeh, P., Schoefs, B. & Sabzalian, M. R. Photosynthesis under artificial light: the shift in primary and secondary metabolism. Philos. Trans. R. Soc. Lond. B Biol. Sci. 369, 20130243 (2014).
pubmed: 24591723
pmcid: 3949401
doi: 10.1098/rstb.2013.0243
Poulet, L. et al. Significant reduction in energy for plant-growth lighting in space using targeted LED lighting and spectral manipulation. Life Sci. Space Res. 2, 43–53 (2014).
doi: 10.1016/j.lssr.2014.06.002
Wang, L. et al. Transcriptomic analysis of the interaction between FLOWERING LOCUS T induction and photoperiodic signaling in response to spaceflight. Front. Cell Dev. Biol. 9, 813246 (2022).
pubmed: 35178402
pmcid: 8844200
doi: 10.3389/fcell.2021.813246
Blancaflor, E. B. et al. A Researcher’s Guide to International Space Station Plant Science. (NASA ISS Research Integration Office, 2023).
Paul, A.-L., Amalfitano, C. E. & Ferl, R. J. Plant growth strategies are remodeled by spaceflight. BMC Plant Biol. 12, 232 (2012).
pubmed: 23217113
pmcid: 3556330
doi: 10.1186/1471-2229-12-232
Sychev, V. N., Levinskikh, M. A., Gostimsky, S. A., Bingham, G. E. & Podolsky, I. G. Spaceflight effects on consecutive generations of peas grown onboard the Russian segment of the International Space Station. Acta Astronaut. 60, 426–432 (2007).
doi: 10.1016/j.actaastro.2006.09.009
Massa, G. D., Kim, H.-H., Wheeler, R. M. & Mitchell, C. A. Plant productivity in response to LED lighting. Hortscience 43, 1951–1956 (2008).
doi: 10.21273/HORTSCI.43.7.1951
Lazzarin, M. et al. LEDs make it resilient: effects on plant growth and defense. Trends Plant Sci. 26, 496–508 (2021).
pubmed: 33358304
doi: 10.1016/j.tplants.2020.11.013
Massa, G. D., Wheeler, R. M., Morrow, R. C. & Levine, H. G. In Growth Chambers on the International Space Station for Large Plants. 1134 edn. 215–222 (International Society for Horticultural Science (ISHS), Leuven, Belgium, 2016).
Monje, O. et al. Hardware validation of the advanced plant habitat on ISS: Canopy photosynthesis in reduced gravity. Front. Plant Sci. 11, 673 (2020).
pubmed: 32625217
pmcid: 7314936
doi: 10.3389/fpls.2020.00673
Millar, K. D. L. et al. A novel phototropic response to red light is revealed in microgravity. N. Phytol. 186, 648–656 (2010).
doi: 10.1111/j.1469-8137.2010.03211.x
Thoma, F., Somborn-Schulz, A., Schlehuber, D., Keuter, V. & Deerberg, G. Effects of light on secondary metabolites in selected leafy greens: a review. Front. Plant Sci. 11, 497 (2020).
pubmed: 32391040
pmcid: 7193822
doi: 10.3389/fpls.2020.00497
Kordyum, E. & Hasenstein, K. H. Plant biology for space exploration - Building on the past, preparing for the future. Life Sci. Space Res. 29, 1–7 (2021).
doi: 10.1016/j.lssr.2021.01.003
Vermeulen, A. C. J., Hubers, C., de Vries, L. & Brazier, F. What horticulture and space exploration can learn from each other: the mission to mars initiative in the Netherlands. Acta Astronaut. 177, 421–424 (2020).
doi: 10.1016/j.actaastro.2020.05.015
Fitzpatrick, C. R. et al. The plant microbiome: from ecology to reductionism and beyond. Annu. Rev. Microbiol. 74, 81–100 (2020).
pubmed: 32530732
doi: 10.1146/annurev-micro-022620-014327
Trivedi, P., Leach, J. E., Tringe, S. G., Sa, T. & Singh, B. K. Plant-microbiome interactions: from community assembly to plant health. Nat. Rev. Microbiol. 18, 607–621 (2020).
pubmed: 32788714
doi: 10.1038/s41579-020-0412-1
Bastìas, D. A., Balestrini, R., Pollmann, S. & Gundel, P. E. Environmental interference of plant-microbe interactions. Plant Cell Environ. 45, 3387–3398 (2022).
pubmed: 36180415
pmcid: 9828629
doi: 10.1111/pce.14455
Porras-Alfaro, A. & Bayman, P. Hidden fungi, emergent properties: endophytes and microbiomes. Annu. Rev. Phytopathol. 49, 291–315 (2011).
pubmed: 19400639
doi: 10.1146/annurev-phyto-080508-081831
Yan, L. et al. Beneficial effects of endophytic fungi colonization on plants. Appl. Microbiol. Biotechnol. 103, 3327–3340 (2019).
pubmed: 30847542
Renaud, C., Leys, N. & Wattiez, R. Photosynthetic microorganisms, an overview of their biostimulant effects on plants and perspectives for space agriculture. J. Plant Interact. 18, 2242697 (2023).
doi: 10.1080/17429145.2023.2242697
Udvardi, M. & Poole, P. S. Transport and metabolism in legume-rhizobia symbioses. Annu. Rev. Plant Biol. 64, 781–805 (2013).
pubmed: 23451778
doi: 10.1146/annurev-arplant-050312-120235
Lanfranco, L., Fiorilli, V. & Gutjahr, C. Partner communication and role of nutrients in the arbuscular mycorrhizal symbiosis. N. Phytol. 220, 1031–1046 (2018).
doi: 10.1111/nph.15230
Parmagnani, A. S. et al. Bacterial volatiles (mVOC) emitted by the phytopathogen Erwinia amylovora promote Arabidopsis thaliana growth and oxidative stress. Antioxidants 12, 600 (2023).
pubmed: 36978848
pmcid: 10045578
doi: 10.3390/antiox12030600
Fincheira, P. & Quiroz, A. Microbial volatiles as plant growth inducers. Microbiol. Res. 208, 63–75 (2018).
pubmed: 29551213
doi: 10.1016/j.micres.2018.01.002
Alagna, F., Balestrini, R., Chitarra, W., Marsico, A. D. & Nerva, L. in Priming-Mediated Stress and Cross-Stress Tolerance in Crop Plants (eds Md. A. Hossain et al.) 35–56 (Academic Press, 2020).
Pieterse, C. M. et al. Induced systemic resistance by beneficial microbes. Annu. Rev. Phytopathol. 52, 347–375 (2014).
pubmed: 24906124
doi: 10.1146/annurev-phyto-082712-102340
Foster, J. S., Wheeler, R. M. & Pamphile, R. Host-microbe interactions in microgravity: assessment and implications. Life 4, 250–266 (2014).
pubmed: 25370197
pmcid: 4187166
doi: 10.3390/life4020250
Fu, Y. M. et al. Change of growth promotion and disease resistant of wheat seedling by application of biocontrol bacterium Pseudochrobactrum kiredjianiae A4 under simulated microgravity. Acta Astronaut. 139, 222–227 (2017).
doi: 10.1016/j.actaastro.2017.06.022
Checinska Sielaff, A. et al. Characterization of the total and viable bacterial and fungal communities associated with the International Space Station surfaces. Microbiome 7, 50 (2019).
pubmed: 30955503
pmcid: 6452512
doi: 10.1186/s40168-019-0666-x
Schuerger, A. C. Integrated pest management protocols for space-based bioregenerative life support systems. Front. Astron. Space Sci. 8, 75964 (2021).
Pierson, D. L. Microbial contamination of spacecraft. Gravit. Space Biol. Bull. 14, 1–6 (2001).
pubmed: 11865864
Mishchenko, L., Dunich, A. & Danilova, O. Impact of a real microgravity on the productivity of tomato plants and resistance to viruses. Proceedings of the Life in Space for Life on Earth. 18–22 June 2012, at Aberdeen, UK. ESA-SP Vol. 706, Id. 48 (2013)
Bishop, D. L., Levine, H. G., Kropp, B. R. & Anderson, A. J. Seedborne fungal contamination: consequences in space-grown wheat. Phytopathology 87, 1125–1133 (1997).
pubmed: 11540734
doi: 10.1094/PHYTO.1997.87.11.1125
Ryba-White, M. et al. Growth in microgravity increases susceptibility of soybean to a fungal pathogen. Plant Cell Physiol. 42, 657–664 (2001).
pubmed: 11427686
doi: 10.1093/pcp/pce082
Massa, G. D. et al. VEG-01: Veggie hardware validation testing on the International Space Station. Open Agriculture 2, 33–41 (2017).
doi: 10.1515/opag-2017-0003
Schuerger, A. C. et al. Fusarium oxysporum as an opportunistic fungal pathogen on Zinnia hybrida plants grown on board the International Space Station. Astrobiology 21, 1029–1048 (2021).
pubmed: 33926205
doi: 10.1089/ast.2020.2399
Khodadad, C. L. M. et al. Microbiological and nutritional analysis of lettuce crops grown on the International Space Station. Front. Plant Sci. 11, 199 (2020).
pubmed: 32210992
pmcid: 7067979
doi: 10.3389/fpls.2020.00199
Chialva, M., Lanfranco, L. & Bonfante, P. The plant microbiota: composition, functions, and engineering. Curr. Opin. Biotechnol. 73, 135–142 (2022).
pubmed: 34392234
doi: 10.1016/j.copbio.2021.07.003
Teixeira, P. et al. Specific modulation of the root immune system by a community of commensal bacteria. Proc. Natl Acad. Sci. USA 118, e2100678118 (2021).
pubmed: 33879573
pmcid: 8072228
doi: 10.1073/pnas.2100678118
Salas-González, I. et al. Coordination between microbiota and root endodermis supports plant mineral nutrient homeostasis. Science 371, eabd0695 (2021).
pubmed: 33214288
doi: 10.1126/science.abd0695
Santoyo, G., Moreno-Hagelsieb, G., Orozco-Mosqueda Mdel, C. & Glick, B. R. Plant growth-promoting bacterial endophytes. Microbiol. Res. 183, 92–99 (2016).
pubmed: 26805622
doi: 10.1016/j.micres.2015.11.008
Roy, S. et al. Celebrating 20 years of genetic discoveries in legume nodulation and symbiotic nitrogen fixation. Plant Cell 32, 15–41 (2020).
pubmed: 31649123
doi: 10.1105/tpc.19.00279
Blake, C., Christensen, M. N. & Kovács, Á.T. Molecular aspects of plant growth promotion and protection by Bacillus subtilis. Mol. Plant Microbe Interact. 34, 15–25 (2021).
pubmed: 32986513
doi: 10.1094/MPMI-08-20-0225-CR
Bastias, D. A., Martínez-Ghersa, M. A., Ballaré, C. L. & Gundel, P. E. Epichloë fungal endophytes and plant defenses: not just alkaloids. Trends Plant Sci. 22, 939–948 (2017).
pubmed: 28923242
doi: 10.1016/j.tplants.2017.08.005
Lorito, M., Woo, S. L., Harman, G. E. & Monte, E. Translational research on Trichoderma: from ‘omics to the field. Annu. Rev. Phytopathol. 48, 395–417 (2010).
pubmed: 20455700
doi: 10.1146/annurev-phyto-073009-114314
Genre, A., Lanfranco, L., Perotto, S. & Bonfante, P. Unique and common traits in mycorrhizal symbioses. Nat. Rev. Microbiol. 18, 649–660 (2020).
pubmed: 32694620
doi: 10.1038/s41579-020-0402-3
Koehle, A. P., Brumwell, S. L., Seto, E. P., Lynch, A. M. & Urbaniak, C. Microbial applications for sustainable space exploration beyond low Earth orbit. NPJ Microgravity 9, 47 (2023).
pubmed: 37344487
pmcid: 10284894
doi: 10.1038/s41526-023-00285-0
Hummerick, M. E. et al. Spatial characterization of microbial communities on multi-species leafy greens grown simultaneously in the vegetable production systems on the International Space Station. Life 11, 1060 (2021).
pubmed: 34685431
pmcid: 8537831
doi: 10.3390/life11101060
Harris, F., Dobbs, J., Atkins, D., Ippolito, J. A. & Stewart, J. E. Soil fertility interactions with Sinorhizobium-legume symbiosis in a simulated Martian regolith; effects on nitrogen content and plant health. PLoS One 16, e0257053 (2021).
pubmed: 34587163
pmcid: 8480890
doi: 10.1371/journal.pone.0257053
Dauzart, A. J. C., Vandenbrink, J. P. & Kiss, J. Z. The effects of clinorotation on the host plant, Medicago truncatula, and its microbial symbionts. Front. Astron. Space Sci. 3, 3 (2016).
Liu, G. et al. Simulated microgravity and the antagonistic influence of strigolactone on plant nutrient uptake in low nutrient conditions. NPJ Microgravity 4, 20 (2018).
pubmed: 30345347
pmcid: 6193021
doi: 10.1038/s41526-018-0054-z
Nerva, L. et al. Breeding toward improved ecological plant-microbiome interactions. Trends Plant Sci. 27, 1134–1143 (2022).
pubmed: 35803843
doi: 10.1016/j.tplants.2022.06.004
Parasyri, A. et al. Lichen as micro-ecosystem: extremophilic behavior with astrobiotechnological applications. Astrobiology 18, 1528–1542 (2018).
pubmed: 30383392
doi: 10.1089/ast.2017.1789
Massa, G. D., Newsham, G., Hummerick, M. E., Morrow, R. C. & Wheeler, R. M. Plant pillow preparation for the veggie plant growth system on the International Space Station. Gravitat. Space Res. 5, 24–34 (2017).
doi: 10.2478/gsr-2017-0002
Baron, D., Amaro, A. C. E., Campos, F. G., Boaro, C. S. F. & Ferreira, G. in Plant Metabolites and Regulation Under Environmental Stress (eds Ahmad, P. et al.) 415–425 (Academic Press, 2018).
Li, Q., Li, X., Tang, B. & Gu, M. Growth responses and root characteristics of lettuce grown in aeroponics, hydroponics, and substrate culture. Horticulturae 4, 35 (2018).
doi: 10.3390/horticulturae4040035
Kyriacou, M. C. et al. Phenolic constitution, phytochemical and macronutrient content in three species of microgreens as modulated by natural fiber and synthetic substrates. Antioxidants 9, 252 (2020).
pubmed: 32244953
pmcid: 7139710
doi: 10.3390/antiox9030252
Ming, D. W. & Henninger, D. L. Use of lunar regolith as a substrate for plant growth. Adv. Space Res. 14, 435–443 (1994).
pubmed: 11538023
doi: 10.1016/0273-1177(94)90333-6
Wamelink, G. W., Frissel, J. Y., Krijnen, W. H., Verwoert, M. R. & Goedhart, P. W. Can plants grow on Mars and the moon: a growth experiment on Mars and moon soil simulants. PLoS One 9, e103138 (2014).
pubmed: 25162657
pmcid: 4146463
doi: 10.1371/journal.pone.0103138
Yao, Z., Feng, J. & Liu, H. Bioweathering improvement of lunar soil simulant improves the cultivated wheat’s seedling length. Acta Astronaut. 193, 1–8 (2022).
doi: 10.1016/j.actaastro.2021.12.055
Wamelink, G., Frissel, J., Krijnen, W. & Verwoert, M. in Terraforming Mars, 313–329 (Wiley, 2021).
Paul, A.-L., Elardo, S. M. & Ferl, R. Plants grown in Apollo lunar regolith present stress-associated transcriptomes that inform prospects for lunar exploration. Commun. Biol. 5, 382 (2022).
pubmed: 35552509
pmcid: 9098553
doi: 10.1038/s42003-022-03334-8
Caporale, A. G. et al. Green compost amendment improves potato plant performance on Mars regolith simulant as substrate for cultivation in space. Plant Soil 486, 217–233 (2023).
doi: 10.1007/s11104-022-05860-0
Duri, L. G. et al. The potential for lunar and martian regolith simulants to sustain plant growth: a multidisciplinary overview. Front. Astron. Space Sci. 8, 747821 (2022).
Paradiso, R. et al. Design of a module for cultivation of tuberous plants in microgravity: The ESA project “Precursor of Food Production Unit” (PFPU). Front. Plant Sci. 11, 417 (2020).
pubmed: 32499789
pmcid: 7242650
doi: 10.3389/fpls.2020.00417
Takeuchi, Y. 3D printable hydroponics: a digital fabrication pipeline for soilless plant cultivation. IEEE Access 7, 35863–35873 (2019).
doi: 10.1109/ACCESS.2019.2905233
Brinkert, K., Zhuang, C. P., Escriba-Gelonch, M. & Hessel, V. The potential of catalysis for closing the loop in human space exploration. Catal. Today 423, 114242 (2023).
doi: 10.1016/j.cattod.2023.114242
Zandalinas, S. I. et al. The impact of multifactorial stress combination on plant growth and survival. N. Phytologist 230, 1034–1048 (2021).
doi: 10.1111/nph.17232
Ferranti, F., Del Bianco, M. & Pacelli, C. Advantages and limitations of current microgravity platforms for space biology research. Appl. Sci. 11, 68 (2021).
doi: 10.3390/app11010068
Huff, J. L. et al. Galactic cosmic ray simulation at the NASA space radiation laboratory—progress, challenges and recommendations on mixed-field effects. Life Sci. Space Res. 36, 90–104 (2023).
doi: 10.1016/j.lssr.2022.09.001
Land, E. S., Canaday, E., Meyers, A., Wyatt, S. & Perera, I. Y. Bridging the gap: parallel profiling of ribosome associated and total RNA species can identify transcriptional regulatory mechanisms of plants in spaceflight. J. Plant Interact. 18, 2248173 (2023).
doi: 10.1080/17429145.2023.2248173