Deciphering the multi-scale mechanism of herbal phytoconstituents in targeting breast cancer: a computational pharmacological perspective.


Journal

Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288

Informations de publication

Date de publication:
11 Oct 2024
Historique:
received: 29 06 2024
accepted: 01 10 2024
medline: 12 10 2024
pubmed: 12 10 2024
entrez: 11 10 2024
Statut: epublish

Résumé

Breast Cancer (BC) is the most common cause of cancer-associated deaths in females worldwide. Despite advancements in BC treatment driven by extensive characterization of its molecular hallmarks, challenges such as drug resistance, tumor relapse, and metastasis persist. Therefore, there is an urgent need for alternative treatment approaches with multi-modal efficacy to overcome these hurdles. In this context, natural bioactives are increasingly recognized for their pivotal role as anti-cancer compounds. This study focuses on predicting molecular targets for key herbal phytoconstituents-gallic acid, piperine, quercetin, resveratrol, and beta-sitosterol-present in the polyherbal formulation, Krishnadi Churna. Using an in-silico network pharmacology model, key genes were identified and docked against these marker compounds and controls. Mammary carcinoma emerged as the most significant phenotype of the putative targets. Analysis of an online database revealed that out of 135 predicted targets, 134 were mutated in breast cancer patients. Notably, ESR1, CYP19A1, and EGFR were identified as key genes which are known to regulate the BC progression. Docking studies demonstrated that the herbal phytoconstituents had similar or better docking scores than positive controls for these key genes, with convincing protein-ligand interactions confirmed by molecular dynamics simulations, MM/GBSA and free energy landscape (FEL) analysis. Overall, this study highlights the predictive potential of herbal phytoconstituents in targeting BC genes, suggesting their promise as a basis for developing new therapeutic formulations for BC.

Identifiants

pubmed: 39394443
doi: 10.1038/s41598-024-75059-z
pii: 10.1038/s41598-024-75059-z
doi:

Substances chimiques

Estrogen Receptor alpha 0
Sitosterols 0
gamma-sitosterol 5LI01C78DD
ESR1 protein, human 0
Resveratrol Q369O8926L
Alkaloids 0
Antineoplastic Agents, Phytogenic 0
CYP19A1 protein, human EC 1.14.14.1
piperine U71XL721QK
Quercetin 9IKM0I5T1E
Gallic Acid 632XD903SP
Phytochemicals 0
Stilbenes 0
Aromatase EC 1.14.14.1
Piperidines 0
Benzodioxoles 0
Polyunsaturated Alkamides 0

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

23795

Informations de copyright

© 2024. The Author(s).

Références

Bray, F. et al. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 74(3), 229–263 (2024).
pubmed: 38572751 doi: 10.3322/caac.21834
Denkert, C. et al. Molecular alterations in triple-negative breast cancer—the road to new treatment strategies. Lancet 389(10087), 2430–2442 (2017).
pubmed: 27939063 doi: 10.1016/S0140-6736(16)32454-0
Loibl, S., Morrow, P. P., Denkert, M. & Curigliano, C. Breast cancer. Lancet 397, 1750–1769 (2021).
pubmed: 33812473 doi: 10.1016/S0140-6736(20)32381-3
Harbeck, N. et al. Breast cancer. Nat. Rev. Dis. Primers 5, 66 (2019).
pubmed: 31548545 doi: 10.1038/s41572-019-0111-2
Jin, X. & Mu, P. Targeting breast cancer metastasis. Breast Cancer Basic Clin. Res. 9, 25460 (2015).
doi: 10.4137/BCBCR.S25460
Desai, A. G. et al. Medicinal plants and cancer chemoprevention. Curr. Drug Metab. 9(7), 581–591 (2008).
pubmed: 18781909 pmcid: 4160808 doi: 10.2174/138920008785821657
Vashi, R., Patel, B. M. & Goyal, R. K. Keeping abreast about Ashwagandha in breast cancer. J. Ethnopharmacol. 269, 113759 (2021).
pubmed: 33359916 doi: 10.1016/j.jep.2020.113759
Henamayee, S. et al. Therapeutic emergence of rhein as a potential anticancer drug: a review of its molecular targets and anticancer properties. Molecules 25(10), 2278 (2020).
pubmed: 32408623 pmcid: 7288145 doi: 10.3390/molecules25102278
Rafieian-Kopaei, M. & Movahedi, M. Breast cancer chemopreventive and chemotherapeutic effects of Camellia Sinensis (green tea): an updated review. Electron. Phys. 9(2), 3838 (2017).
doi: 10.19082/3838
Roy, A. Reigniting pharmaceutical innovation through holistic drug targeting. Drug Discov. 45 (2016).
Chandran, U. et al. Network pharmacology. Innovative Approaches Drug Discovery 127 (2017).
Borse, S. et al. Ayurveda botanicals in COVID-19 management: an in silico multi-target approach. PLoS ONE 16(6), e0248479 (2021).
pubmed: 34115763 pmcid: 8195371 doi: 10.1371/journal.pone.0248479
Mathur, B. Brihad Nighantu Ratnakar, Mumbai. Khemraj Shrikrishnadass Prakashan, vol. 5/6, 495 (2012).
Srivastava, D. S. Sharangdhara Samhita of Acharya Sharangdhara. Madhyam Khanda, Ch. 6 Verse 16 Chaukhambha Orientalia Varanasi 175 (2011).
Mishra, P. S. N. Bhaishajya Ratnavali of Kaviraj Govind Das Sen. Ch. 16, Verse 20. Chaukhambha Surbharti Prakashan 460 (2012).
Tripathi, D. B. Charaka Samhita of Agnivesha. Chaukhambha Surbharti Prakashan, vol. 2, 883 (2013).
Patel, S. et al. High-performance thin-layer chromatographic standardization and quantification of marker compounds in an ayurvedic polyherbal formulation: Krishnadi Churna. J. Planar Chromatogr. 34(6), 493–502 (2021).
doi: 10.1007/s00764-021-00144-2
Uhlen, M. et al. A pathology atlas of the human cancer transcriptome. Science 357(6352), 2507 (2017).
doi: 10.1126/science.aan2507
Cerami, E. et al. The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov. 2(5), 401–404 (2012).
pubmed: 22588877 doi: 10.1158/2159-8290.CD-12-0095
Gao, J. et al. Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci. Signal. 6(269), pl1–pl1 (2013).
pubmed: 23550210 pmcid: 4160307 doi: 10.1126/scisignal.2004088
Daina, A., Michielin, O. & Zoete, V. SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep. 7(1), 42717 (2017).
pubmed: 28256516 pmcid: 5335600 doi: 10.1038/srep42717
Shannon, P. et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 13(11), 2498–2504 (2003).
pubmed: 14597658 pmcid: 403769 doi: 10.1101/gr.1239303
Garcia-Moreno, A. et al. Functional enrichment analysis of regulatory elements. Biomedicines 10(3), 590 (2022).
pubmed: 35327392 pmcid: 8945021 doi: 10.3390/biomedicines10030590
Ge, S. X., Jung, D. & Yao, R. ShinyGO: a graphical gene-set enrichment tool for animals and plants. Bioinformatics 36(8), 2628–2629 (2020).
pubmed: 31882993 doi: 10.1093/bioinformatics/btz931
Kanehisa, M. et al. KEGG: integrating viruses and cellular organisms. Nucleic Acids Res. 49(D1), D545–D551 (2021).
pubmed: 33125081 doi: 10.1093/nar/gkaa970
Kanehisa, M. & Goto, S. KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 28(1), 27–30 (2000).
pubmed: 10592173 pmcid: 102409 doi: 10.1093/nar/28.1.27
Kanehisa, M. Toward understanding the origin and evolution of cellular organisms. Protein Sci. 28(11), 1947–1951 (2019).
pubmed: 31441146 pmcid: 6798127 doi: 10.1002/pro.3715
Kanehisa, M. et al. KEGG for taxonomy-based analysis of pathways and genomes. Nucleic Acids Res. 51(D1), D587–D592 (2023).
pubmed: 36300620 doi: 10.1093/nar/gkac963
Raudvere, U. et al. G: profiler: a web server for functional enrichment analysis and conversions of gene lists (2019 update). Nucleic Acids Res. 47(W1), W191–W198 (2019).
pubmed: 31066453 pmcid: 6602461 doi: 10.1093/nar/gkz369
Szklarczyk, D. et al. The STRING database in 2023: protein–protein association networks and functional enrichment analyses for any sequenced genome of interest. Nucleic Acids Res. 51(D1), D638–D646 (2023).
pubmed: 36370105 doi: 10.1093/nar/gkac1000
Kim, S. et al. PubChem 2023 update. Nucleic Acids Res. 51(D1), D1373–D1380 (2023).
pubmed: 36305812 doi: 10.1093/nar/gkac956
Liu, T. et al. BindingDB: a web-accessible database of experimentally determined protein–ligand binding affinities. Nucleic Acids Res. 35(suppl_1), D198–D201 (2007).
pubmed: 17145705 doi: 10.1093/nar/gkl999
Burks, H. E. et al. Discovery of an acrylic acid based tetrahydroisoquinoline as an orally bioavailable selective estrogen receptor degrader for ERα + breast cancer. J. Med. Chem. 60(7), 2790–2818 (2017).
pubmed: 28296398 doi: 10.1021/acs.jmedchem.6b01468
Ghosh, D. et al. Novel aromatase inhibitors by structure-guided design. J. Med. Chem. 55(19), 8464–8476 (2012).
pubmed: 22951074 pmcid: 3469775 doi: 10.1021/jm300930n
Yasuda, H. et al. Structural, biochemical, and clinical characterization of epidermal growth factor receptor (EGFR) exon 20 insertion mutations in lung cancer. Sci. Transl. Med. 5(216), 216 (2013).
doi: 10.1126/scitranslmed.3007205
Ylilauri, M. & Pentikäinen, O. T. MMGBSA as a tool to understand the binding affinities of filamin–peptide interactions. J. Chem. Inf. Model. 53(10), 2626–2633 (2013).
pubmed: 23988151 doi: 10.1021/ci4002475
Wang, W. et al. MAPK4 promotes triple negative breast cancer growth and reduces tumor sensitivity to PI3K blockade. Nat. Commun. 13(1), 245 (2022).
pubmed: 35017531 pmcid: 8752662 doi: 10.1038/s41467-021-27921-1
Jiang, W. et al. Expression and clinical significance of MAPK and EGFR in triple–negative breast cancer. Oncol. Lett. 19(3), 1842–1848 (2020).
pubmed: 32194678 pmcid: 7038935
Aziz, S. W. & Aziz, M. H. Major signaling pathways involved in breast cancer. In Breast Cancer Metastasis Drug Resistance: Progress Prospects 47–64 (2013).
Galiè, M. RAS as supporting actor in breast cancer. Front. Oncol. 9, 1199 (2019).
pubmed: 31781501 pmcid: 6861383 doi: 10.3389/fonc.2019.01199
Abdin, S. M. et al. Nuclear factor-κB signaling inhibitors revert multidrug-resistance in breast cancer cells. Chemico-Biol. Interact. 340, 109450 (2021).
doi: 10.1016/j.cbi.2021.109450
Miricescu, D. et al. PI3K/AKT/mTOR signaling pathway in breast cancer: from molecular landscape to clinical aspects. Int. J. Mol. Sci. 22(1), 173 (2020).
pubmed: 33375317 pmcid: 7796017 doi: 10.3390/ijms22010173
Dustin, D., Gu, G. & Fuqua, S. A. ESR1 mutations in breast cancer. Cancer 125(21), 3714–3728 (2019).
pubmed: 31318440 doi: 10.1002/cncr.32345
Barros-Oliveira, M. C. et al. Influence of CYP19A1 gene expression levels in women with breast cancer: a systematic review of the literature. Clinics 76, e2846 (2021).
pubmed: 34133482 pmcid: 8183338 doi: 10.6061/clinics/2021/e2846
Burness, M. L., Grushko, T. A. & Olopade, O. I. Epidermal growth factor receptor in triple-negative and basal-like breast cancer: promising clinical target or only a marker? Cancer J. 16(1), 23–32 (2010).
pubmed: 20164687 doi: 10.1097/PPO.0b013e3181d24fc1
Masuda, H. et al. Role of epidermal growth factor receptor in breast cancer. Breast Cancer Res. Treat. 136, 331–345 (2012).
pubmed: 23073759 doi: 10.1007/s10549-012-2289-9
Oshi, M. et al. Conflicting roles of EGFR expression by subtypes in breast cancer. Am. J. Cancer Res. 11(10), 5094 (2021).
pubmed: 34765314 pmcid: 8569361
World Health Organisation. https://www.who.int/initiatives/who-global-centre-for-traditional-medicine/ (2023).
Horneber, M. et al. How many cancer patients use complementary and alternative medicine: a systematic review and metaanalysis. Integr. Cancer Therap. 11(3), 187–203 (2012).
doi: 10.1177/1534735411423920
Yang, Z. et al. Withania somnifera root extract inhibits mammary cancer metastasis and epithelial to mesenchymal transition. PLoS ONE 8(9), e75069 (2013).
pubmed: 24069380 pmcid: 3771884 doi: 10.1371/journal.pone.0075069
Hahm, E. R., Lee, J. & Singh, S. V. Role of mitogen-activated protein kinases and Mcl‐1 in apoptosis induction by withaferin A in human breast cancer cells. Mol. Carcinogenes. 53(11), 907–916 (2014).
doi: 10.1002/mc.22050
Cao, X. et al. Curcumin suppresses tumorigenesis by ferroptosis in breast cancer. PLoS ONE 17(1), e0261370 (2022).
pubmed: 35041678 pmcid: 8765616 doi: 10.1371/journal.pone.0261370
Karia, P., Patel, K. V. & Rathod, S. S. Breast cancer amelioration by Butea monosperma in-vitro and in-vivo. J. Ethnopharmacol. 217, 54–62 (2018).
pubmed: 29366766 doi: 10.1016/j.jep.2017.12.026
Arya, R. K. et al. Anti-breast tumor activity of Eclipta extract in-vitro and in-vivo: novel evidence of endoplasmic reticulum specific localization of Hsp60 during apoptosis. Sci. Rep. 5(1), 18457 (2015).
pubmed: 26672742 pmcid: 4682077 doi: 10.1038/srep18457
Lai, L. et al. Piperine suppresses tumor growth and metastasis in vitro and in vivo in a 4T1 murine breast cancer model. Acta Pharmacol. Sin. 33(4), 523–530 (2012).
pubmed: 22388073 pmcid: 4003369 doi: 10.1038/aps.2011.209
Waks, A. G. & Winer, E. P. J. J. Breast cancer treatment: a review. JAMA 321(3), 288–300 (2019).
pubmed: 30667505 doi: 10.1001/jama.2018.19323
Jovanović Galović, A. et al. The effects of resveratrol-rich extracts of Vitis vinifera pruning waste on HeLa, MCF-7 and MRC-5 cells: apoptosis, autophagia and necrosis interplay. Pharmaceutics 14(10), 2017–p (2022).
pubmed: 36297452 pmcid: 9607132 doi: 10.3390/pharmaceutics14102017
You, D. et al. Entelon
pubmed: 34203721 pmcid: 8232270 doi: 10.3390/molecules26123644
Shivhare, S. C. et al. Antioxidant and anticancer evaluation of Scindapsus Officinalis (Roxb.) Schott fruits. AYU 32(3), 388 (2011).
pubmed: 22529657 pmcid: 3326889 doi: 10.4103/0974-8520.93921
Matt Lam, K. W. et al. Correction: an aqueous extract of Fagonia Cretica induces DNA damage, cell cycle arrest and apoptosis in breast cancer cells via FOXO3a and p53 expression. PLoS ONE 9(7), e102655 (2014).
doi: 10.1371/journal.pone.0102655
Bibi, Y. et al. The study of anticancer and antifungal activities of Pistacia integerrima extract in vitro. Indian J. Pharm. Sci. 74(4), 375 (2012).
pubmed: 23626397 pmcid: 3630737 doi: 10.4103/0250-474X.107085
Bawazeer, S. et al. Isolation of bioactive compounds from Pistacia integerrima with promising effects on reverse cancer multidrug resistance. Russ J. Bioorg. Chem. 47, 997–1003 (2021).
doi: 10.1134/S1068162021050204
Blok, E. J. et al. Optimal duration of extended adjuvant endocrine therapy for early breast cancer; results of the IDEAL trial (BOOG 2006-05). J. Natl. Cancer Inst. 110(1), 40–48 (2018).
doi: 10.1093/jnci/djx134
Robson, M. et al. Olaparib for metastatic breast cancer in patients with a germline BRCA mutation. N Engl. J. Med. 377(6), 523–533 (2017).
pubmed: 28578601 doi: 10.1056/NEJMoa1706450
André, F. et al. Alpelisib for PIK3CA-mutated, hormone receptor–positive advanced breast cancer. N Engl. J. Med. 380(20), 1929–1940 (2019).
pubmed: 31091374 doi: 10.1056/NEJMoa1813904
Zhao, H. et al. Aromatase expression and regulation in breast and endometrial cancer. J. Mol. Endocrinol. 57(1), R19–R33 (2016).
pubmed: 27067638 pmcid: 5519084 doi: 10.1530/JME-15-0310

Auteurs

Heena Saini (H)

Integrated Translational Molecular Biology Unit (ITMBU), Department of Rog Nidan Evam Vikriti Vigyan (Pathology), All India Institute of Ayurveda, New Delhi, 110076, India. drheenasaini@gmail.com.

Prashant Kumar Gupta (PK)

Ayurinformatics Laboratory, Department of Kaumarabhritya (Pediatrics), All India Institute of Ayurveda, New Delhi, 110076, India.

Arun Kumar Mahapatra (AK)

Ayurinformatics Laboratory, Department of Kaumarabhritya (Pediatrics), All India Institute of Ayurveda, New Delhi, 110076, India.

Shrikrishna Rajagopala (S)

Ayurinformatics Laboratory, Department of Kaumarabhritya (Pediatrics), All India Institute of Ayurveda, New Delhi, 110076, India.

Richa Tripathi (R)

Integrated Translational Molecular Biology Unit (ITMBU), Department of Rog Nidan Evam Vikriti Vigyan (Pathology), All India Institute of Ayurveda, New Delhi, 110076, India.

Tanuja Nesari (T)

Department of DravyaGuna (Materia Medica & Pharmacology), All India Institute of Ayurveda, New Delhi, 110076, India. director@aiia.gov.in.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH