Effects of coagulation factors on bone cells and consequences of their absence in haemophilia a patients.


Journal

Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288

Informations de publication

Date de publication:
23 10 2024
Historique:
received: 05 07 2024
accepted: 08 10 2024
medline: 24 10 2024
pubmed: 24 10 2024
entrez: 24 10 2024
Statut: epublish

Résumé

Haemophilia is associated with reduced bone mass and mineral density. Due to the rarity of the disease and the heterogeneity among the studies, the pathogenesis of bone loss is still under investigation. We studied the effects of coagulation factors on bone cells and characterized in a pilot study the osteoclastogenic potential of patients' osteoclast precursors. To evaluate the effect of coagulation factors on osteoclasts, we treated Healthy Donor-Peripheral Blood Mononuclear Cells (HD-PBMC) with Factor VIII (FVIII), von Willebrand Factor (VWF), FVIII/VWF complex, activated Factor IX (FIXa), activated Factor X (FXa) and Thrombin (THB). FVIII, VWF, FVIII/VWF, FXa and THB treatments reduced osteoclast differentiation of HD-PBMC and VWF affected also bone resorption. Interestingly, PBMC isolated from patients with moderate/severe haemophilia showed an increased osteoclastogenic potential due to the alteration of osteoclast precursors. Moreover, increased expression of genes involved in osteoclast differentiation/activity was revealed in osteoclasts of an adult patient with moderate haemophilia. Control osteoblasts treated with the coagulation factors showed that FVIII and VWF reduced ALP positivity; the opposite effect was observed following THB treatment. Moreover, FVIII, VWF and FVIII/VWF reduced mineralization ability. These results could be important to understand how coagulation factors deficiency influences bone remodeling activity in haemophilia.

Identifiants

pubmed: 39443571
doi: 10.1038/s41598-024-75747-w
pii: 10.1038/s41598-024-75747-w
doi:

Substances chimiques

Blood Coagulation Factors 0
Factor VIII 9001-27-8

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

25001

Subventions

Organisme : Ministero dell'Università e della Ricerca
ID : 5x1000-2023
Organisme : Fondazione Umberto Veronesi
ID : 2023
Organisme : Italian Musculoskeletal Apparatus Network RAMS
ID : RAMS
Organisme : Italian Ministry of Health
ID : Current Research funds-2023

Informations de copyright

© 2024. The Author(s).

Références

Escobar, M., Sallah, S. & Hemophilia A and hemophilia B: focus on arthropathy and variables affecting bleeding severity and prophylaxis. J. Thromb. Haemost. 11, 1449–1453. https://doi.org/10.1111/jth.12317 (2013).
doi: 10.1111/jth.12317 pubmed: 23763284
Rodriguez-Merchan, E. C. et al. Joint protection in haemophilia. Haemophilia. 17 (Suppl 2), 1–23. https://doi.org/10.1111/j.1365-2516.2011.02615.x (2011).
doi: 10.1111/j.1365-2516.2011.02615.x pubmed: 21819491
Stephensen, D. & Rodriguez-Merchan, E. C. Orthopaedic co-morbidities in the elderly haemophilia population: a review. Haemophilia. 19, 166–173. https://doi.org/10.1111/hae.12006 (2013).
doi: 10.1111/hae.12006 pubmed: 22970726
Rodriguez-Merchan, E. C. Hemophilic arthropathy: a teaching approach devoted to hemophilia treaters in under-development countries. Expert Rev. Hematol. 14, 887–896. https://doi.org/10.1080/17474086.2021.1977118 (2021).
doi: 10.1080/17474086.2021.1977118 pubmed: 34482789
Samuelson Bannow, B. et al. Long-established role in haemophilia A and emerging evidence beyond haemostasis. Blood Rev. 35, 43–50. https://doi.org/10.1016/j.blre.2019.03.002 (2019). Factor VIII.
doi: 10.1016/j.blre.2019.03.002 pubmed: 30922616
Rodriguez-Merchan, E. C. Management of the orthopaedic complications of haemophilia. J. Bone Joint Surg. Br. 80, 191–196 (1998).
doi: 10.1302/0301-620X.80B2.0800191 pubmed: 9546442
Gay, N. D. et al. Increased fracture rates in people with haemophilia: a 10-year single institution retrospective analysis. Br. J. Haematol. 170, 584–586. https://doi.org/10.1111/bjh.13312 (2015).
doi: 10.1111/bjh.13312 pubmed: 25659575
Iorio, A., Fabbriciani, G., Marcucci, M., Brozzetti, M. & Filipponi, P. Bone mineral density in haemophilia patients. A meta-analysis. Thromb. Haemost. 103, 596–603. https://doi.org/10.1160/TH09-09-0629 (2010).
doi: 10.1160/TH09-09-0629 pubmed: 20076854
Kempton, C. L., Antoniucci, D. M. & Rodriguez-Merchan, E. C. Bone health in persons with haemophilia. Haemophilia. 21, 568–577. https://doi.org/10.1111/hae.12736 (2015).
doi: 10.1111/hae.12736 pubmed: 26172840
Anagnostis, P. et al. Reduced bone mineral density in patients with haemophilia A and B in Northern Greece. Thromb. Haemost. 107, 545–551. https://doi.org/10.1160/TH11-08-05563 (2012).
doi: 10.1160/TH11-08-05563 pubmed: 22318743
Kempton, C. L. et al. Bone density in haemophilia: a single institutional cross-sectional study. Haemophilia. 20, 121–128. https://doi.org/10.1111/hae.12240 (2014).
doi: 10.1111/hae.12240 pubmed: 23902277
Gallacher, S. J. et al. Association of severe haemophilia A with osteoporosis: a densitometric and biochemical study. Q. J. Med. 87, 181–186 (1994).
pubmed: 8208906
Recht, M., Liel, M. S., Turner, R. T., Klein, R. F. & Taylor, J. A. The bone disease associated with factor VIII deficiency in mice is secondary to increased bone resorption. Haemophilia. 19, 908–912. https://doi.org/10.1111/hae.12195 (2013).
doi: 10.1111/hae.12195 pubmed: 23731369
Lu, D. et al. LRP1 suppresses bone resorption in mice by inhibiting the RANKL-Stimulated NF-kappaB and p38 pathways during osteoclastogenesis. J. Bone Min. Res. 33, 1773–1784. https://doi.org/10.1002/jbmr.3469 (2018).
doi: 10.1002/jbmr.3469
Gebetsberger, J., Schirmer, M., Wurzer, W. J. & Streif, W. Low bone Mineral Density in Hemophiliacs. Front. Med. (Lausanne). 9, 794456. https://doi.org/10.3389/fmed.2022.794456 (2022).
doi: 10.3389/fmed.2022.794456 pubmed: 35186990
Lin, X. et al. Pathogenesis and treatment of osteoporosis in patients with hemophilia. Arch. Osteoporos. 18, 17. https://doi.org/10.1007/s11657-022-01203-9 (2023).
doi: 10.1007/s11657-022-01203-9 pubmed: 36598583 pmcid: 9813251
Strauss, A. C. et al. Osteoporosis remains constant in patients with hemophilia-long-term course in consideration of comorbidities. Hamostaseologie. 43, 208–214. https://doi.org/10.1055/a-1972-8983 (2023).
doi: 10.1055/a-1972-8983 pubmed: 36863396
Wu, D. & Shen, S. Osteoporosis and associated risk factors in patients with severe hemophilia A: a case-control study from China. BMC Musculoskelet. Disord. 24, 657. https://doi.org/10.1186/s12891-023-06795-y (2023).
doi: 10.1186/s12891-023-06795-y pubmed: 37592270 pmcid: 10433558
Wells, A. J. et al. A case-control study assessing bone mineral density in severe haemophilia A in the UK. Haemophilia 21, 109–115. https://doi.org/10.1111/hae.12565 (2015).
Alioglu, B. et al. Evaluation of bone mineral density in Turkish children with severe haemophilia A: Ankara hospital experience. Haemophilia. 18, 69–74. https://doi.org/10.1111/j.1365-2516.2011.02587.x (2012).
doi: 10.1111/j.1365-2516.2011.02587.x pubmed: 21651678
Baud’huin, M. et al. Factor VIII-von willebrand factor Complex inhibits Osteoclastogenesis and Controls Cell Survival. J. Biol. Chem. 284, https://doi.org/10.1074/jbc.M109.030312 (2009).
Pai, Y. Y. et al. Risk of fractures, repeated fractures and osteoporotic fractures among patients with Hemophilia in Taiwan: a 14-Year Population-based Cohort Study. Int. J. Environ. Res. Public. Health. 20. https://doi.org/10.3390/ijerph20010525 (2022).
Klintman, J., Akesson, K. E., Holme, P. A. & Fischer, K. Bone mineral density in haemophilia - a multicentre study evaluating the impact of different replacement regimens. Haemophilia. 28, 239–246. https://doi.org/10.1111/hae.14487 (2022).
doi: 10.1111/hae.14487 pubmed: 34994489
Rodriguez-Merchan, E. C. Osteoporosis in hemophilia: what is its importance in clinical practice? Expert Rev. Hematol. 15, 697–710. https://doi.org/10.1080/17474086.2022.2108783 (2022).
doi: 10.1080/17474086.2022.2108783 pubmed: 35912904
Katsarou, O. et al. Increased bone resorption is implicated in the pathogenesis of bone loss in hemophiliacs: correlations with hemophilic arthropathy and HIV infection. Ann. Hematol. 89, 67–74. https://doi.org/10.1007/s00277-009-0759-x (2010).
doi: 10.1007/s00277-009-0759-x pubmed: 19488753
Albayrak, C. & Albayrak, D. Vitamin D levels in children with severe hemophilia A: an underappreciated deficiency. Blood Coagul Fibrinolysis. 26, 285–289. https://doi.org/10.1097/MBC.0000000000000237 (2015).
doi: 10.1097/MBC.0000000000000237 pubmed: 25485786
Linari, S. et al. Hypovitaminosis D and osteopenia/osteoporosis in a haemophilia population: a study in HCV/HIV or HCV infected patients. Haemophilia. 19, 126–133. https://doi.org/10.1111/j.1365-2516.2012.02899.x (2013).
doi: 10.1111/j.1365-2516.2012.02899.x pubmed: 22776099
Dagli, M. et al. Evaluation of bone mineral density (BMD) and indicators of bone turnover in patients with hemophilia. Bosn J. Basic. Med. Sci. 18, 206–210. https://doi.org/10.17305/bjbms.2018.2335 (2018).
doi: 10.17305/bjbms.2018.2335 pubmed: 29236646 pmcid: 5988541
Goldscheitter, G., Recht, M., Sochacki, P., Manco-Johnson, M. & Taylor, J. A. Biomarkers of bone disease in persons with haemophilia. Haemophilia. 27, 149–155. https://doi.org/10.1111/hae.13986 (2021).
doi: 10.1111/hae.13986 pubmed: 32856388
Melchiorre, D. et al. RANK-RANKL-OPG in hemophilic arthropathy: from clinical and imaging diagnosis to histopathology. J. Rheumatol. 39, 1678–1686. https://doi.org/10.3899/jrheum.120370 (2012).
doi: 10.3899/jrheum.120370 pubmed: 22753650
Ivanova, H. A., Grudeva-Popova, Z., Deneva, T., Tsvetkova, S. & Mateva, N. A single-center study of bone mineral density in adult patients with severe hemophilia A in correlation with markers of bone metabolism. Folia Med. (Plovdiv). 65, 87–92. https://doi.org/10.3897/folmed.65.e75414 (2023).
doi: 10.3897/folmed.65.e75414 pubmed: 36855979
Alito, A. et al. Haemophilia and Fragility fractures: from pathogenesis to Multidisciplinary Approach. Int. J. Mol. Sci. 24. https://doi.org/10.3390/ijms24119395 (2023).
Sivagurunathan, S. et al. Thrombin inhibits osteoclast differentiation through a non-proteolytic mechanism. J. Mol. Endocrinol. 50, 347–359. https://doi.org/10.1530/JME-12-0177 (2013).
doi: 10.1530/JME-12-0177 pubmed: 23419317
Lari, R., Kitchener, P. D. & Hamilton, J. A. The proliferative human monocyte subpopulation contains osteoclast precursors. Arthritis Res. Ther. 11, R23. https://doi.org/10.1186/ar2616 (2009).
doi: 10.1186/ar2616 pubmed: 19222861 pmcid: 2688256
Li, J. et al. Inhibition of Osteoclastogenesis and Bone Resorption in vitro and in vivo by a prenylflavonoid xanthohumol from hops. Sci. Rep. 5, 17605. https://doi.org/10.1038/srep17605 (2015).
doi: 10.1038/srep17605 pubmed: 26620037 pmcid: 4664947
Lenting, P. J., Denis, C. V. & Christophe, O. D. Emicizumab, a bispecific antibody recognizing coagulation factors IX and X: how does it actually compare to factor VIII? Blood. 130, 2463–2468. https://doi.org/10.1182/blood-2017-08-801662 (2017).
doi: 10.1182/blood-2017-08-801662 pubmed: 29042366
Komano, Y., Nanki, T., Hayashida, K., Taniguchi, K. & Miyasaka, N. Identification of a human peripheral blood monocyte subset that differentiates into osteoclasts. Arthritis Res. Ther. 8, R152. https://doi.org/10.1186/ar2046 (2006).
doi: 10.1186/ar2046 pubmed: 16987426 pmcid: 1779441
Puchner, A. et al. Non-classical monocytes as mediators of tissue destruction in arthritis. Ann. Rheum. Dis. 77, 1490–1497. https://doi.org/10.1136/annrheumdis-2018-213250 (2018).
doi: 10.1136/annrheumdis-2018-213250 pubmed: 29959183
Taves, S. et al. Hemophilia A and B mice, but not VWF(-/-)mice, display bone defects in congenital development and remodeling after injury. Sci. Rep. 9, 14428. https://doi.org/10.1038/s41598-019-50787-9 (2019).
doi: 10.1038/s41598-019-50787-9 pubmed: 31594977 pmcid: 6783554
De Benedetti, F. et al. Impaired skeletal development in interleukin-6-transgenic mice: a model for the impact of chronic inflammation on the growing skeletal system. Arthritis Rheum. 54, 3551–3563. https://doi.org/10.1002/art.22175 (2006).
doi: 10.1002/art.22175 pubmed: 17075861
Citla-Sridhar, D., Sidonio, R. F., Ahuja, S. P. & Jr. & Bone health in haemophilia carriers and persons with Von Willebrand disease: a large database analysis. Haemophilia. 28, 671–678. https://doi.org/10.1111/hae.14565 (2022).
doi: 10.1111/hae.14565 pubmed: 35416396
Pepe, J. et al. Characterization of Extracellular vesicles in osteoporotic patients compared to osteopenic and healthy controls. J. Bone Min. Res. 37, 2186–2200. https://doi.org/10.1002/jbmr.4688 (2022).
doi: 10.1002/jbmr.4688
Hodge, J. M., Kirkland, M. A. & Nicholson, G. C. Multiple roles of M-CSF in human osteoclastogenesis. J. Cell. Biochem. 102, 759–768. https://doi.org/10.1002/jcb.21331 (2007).
doi: 10.1002/jcb.21331 pubmed: 17516513
Sprangers, S., Schoenmaker, T., Cao, Y., Everts, V. & de Vries, T. J. Different blood-borne human osteoclast precursors respond in distinct ways to IL-17A. J. Cell. Physiol. 231, 1249–1260. https://doi.org/10.1002/jcp.25220 (2016).
doi: 10.1002/jcp.25220 pubmed: 26491867
Xue, J. et al. CD14(+)CD16(-) monocytes are the main precursors of osteoclasts in rheumatoid arthritis via expressing Tyro3TK. Arthritis Res. Ther. 22, 221. https://doi.org/10.1186/s13075-020-02308-7 (2020).
doi: 10.1186/s13075-020-02308-7 pubmed: 32958023 pmcid: 7507256
Blair, H. A. & Emicizumab A review in Haemophilia A. Drugs. 79, 1697–1707. https://doi.org/10.1007/s40265-019-01200-2 (2019).
doi: 10.1007/s40265-019-01200-2 pubmed: 31542880
Mansouritorghabeh, H. et al. Reduced bone density in individuals with severe hemophilia B. Int. J. Rheum. Dis. 12, 125–129. https://doi.org/10.1111/j.1756-185X.2009.01394.x (2009).
doi: 10.1111/j.1756-185X.2009.01394.x pubmed: 20374329
Anagnostis, P. et al. The clinical utility of bone turnover markers in the evaluation of bone disease in patients with haemophilia A and B. Haemophilia. 20, 268–275. https://doi.org/10.1111/hae.12271 (2014).
doi: 10.1111/hae.12271 pubmed: 24118364
Weitzmann, M. N. et al. Reduced bone formation in males and increased bone resorption in females drive bone loss in hemophilia A mice. Blood Adv. 3, 288–300. https://doi.org/10.1182/bloodadvances.2018027557 (2019).
doi: 10.1182/bloodadvances.2018027557 pubmed: 30700417 pmcid: 6373738
Cummings, S. R. et al. Denosumab for prevention of fractures in postmenopausal women with osteoporosis. N Engl. J. Med. 361, 756–765. https://doi.org/10.1056/NEJMoa0809493 (2009).
doi: 10.1056/NEJMoa0809493 pubmed: 19671655
Pagel, C. N. et al. Inhibition of osteoblast apoptosis by thrombin. Bone. 33, 733–743. https://doi.org/10.1016/s8756-3282(03)00209-6 (2003).
doi: 10.1016/s8756-3282(03)00209-6 pubmed: 14555279
Tatakis, D. N., Dolce, C. & Dziak, R. Thrombin’s effects on osteoblastic cells. I. Cytosolic calcium and phosphoinositides. Biochem. Biophys. Res. Commun. 164, 119–127. https://doi.org/10.1016/0006-291x(89)91691-4 (1989).
doi: 10.1016/0006-291x(89)91691-4 pubmed: 2553011
Mackie, E. J. et al. Protease-activated receptors in the musculoskeletal system. Int. J. Biochem. Cell. Biol. 40, 1169–1184. https://doi.org/10.1016/j.biocel.2007.12.003 (2008).
doi: 10.1016/j.biocel.2007.12.003 pubmed: 18243039
Smith, R. et al. Activation of protease-activated receptor-2 leads to inhibition of osteoclast differentiation. J. Bone Min. Res. 19, 507–516. https://doi.org/10.1359/JBMR.0301248 (2004).
doi: 10.1359/JBMR.0301248
Kowal, R. C., Herz, J., Goldstein, J. L., Esser, V. & Brown, M. S. Low density lipoprotein receptor-related protein mediates uptake of cholesteryl esters derived from apoprotein E-enriched lipoproteins. Proc. Natl. Acad. Sci. U S A. 86, 5810–5814. https://doi.org/10.1073/pnas.86.15.5810 (1989).
doi: 10.1073/pnas.86.15.5810 pubmed: 2762297 pmcid: 297720
Lillis, A. P., Van Duyn, L. B., Murphy-Ullrich, J. E. & Strickland, D. K. LDL receptor-related protein 1: unique tissue-specific functions revealed by selective gene knockout studies. Physiol. Rev. 88, 887–918. https://doi.org/10.1152/physrev.00033.2007 (2008).
doi: 10.1152/physrev.00033.2007 pubmed: 18626063
Sacco, M. et al. The p.P1127S pathogenic variant lowers Von Willebrand factor levels through higher affinity for the macrophagic scavenger receptor LRP1: clinical phenotype and pathogenic mechanisms. J. Thromb. Haemost. 20, 1818–1829. https://doi.org/10.1111/jth.15765 (2022).
doi: 10.1111/jth.15765 pubmed: 35596664 pmcid: 9545986
Rastegarlari, G. et al. Macrophage LRP1 contributes to the clearance of Von Willebrand factor. Blood. 119, 2126–2134. https://doi.org/10.1182/blood-2011-08-373605 (2012).
doi: 10.1182/blood-2011-08-373605 pubmed: 22234691
Kohara, Y., Haraguchi, R., Kitazawa, R. & Kitazawa, S. Knockdown of Lrp1 in RAW264 cells inhibits osteoclast differentiation and osteoclast-osteoblast interactions in vitro. Biochem. Biophys. Res. Commun. 523, 961–965. https://doi.org/10.1016/j.bbrc.2020.01.065 (2020).
doi: 10.1016/j.bbrc.2020.01.065 pubmed: 31964526
Jesty, J. Analysis of the generation and inhibition of activated coagulation factor X in pure systems and in human plasma. J. Biol. Chem. 261, 8695–8702 (1986).
doi: 10.1016/S0021-9258(19)84436-8 pubmed: 3722168
Tarandovskiy, I. D. et al. Investigation of thrombin concentration at the time of clot formation in simultaneous thrombin and fibrin generation assays. Sci. Rep. 14, 9225. https://doi.org/10.1038/s41598-023-47694-5 (2024).
doi: 10.1038/s41598-023-47694-5 pubmed: 38649717 pmcid: 11035586
van Schooten, C. J. et al. Macrophages contribute to the cellular uptake of Von Willebrand factor and factor VIII in vivo. Blood. 112, 1704–1712. https://doi.org/10.1182/blood-2008-01-133181 (2008).
doi: 10.1182/blood-2008-01-133181 pubmed: 18559674
Drakeford, C. et al. Von Willebrand factor links primary hemostasis to innate immunity. Nat. Commun. 13, 6320. https://doi.org/10.1038/s41467-022-33796-7 (2022).
doi: 10.1038/s41467-022-33796-7 pubmed: 36329021 pmcid: 9633696
Repesse, Y. et al. Factor VIII (FVIII) gene mutations in 120 patients with hemophilia A: detection of 26 novel mutations and correlation with FVIII inhibitor development. J. Thromb. Haemost. 5, 1469–1476. https://doi.org/10.1111/j.1538-7836.2007.02591.x (2007).
doi: 10.1111/j.1538-7836.2007.02591.x pubmed: 17445092

Auteurs

Giulia Battafarano (G)

Bone Physiopathology Research Unit, Translational Pediatrics e Clinical Genetics Research Division, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy.

Stefano Lancellotti (S)

Center for Hemorrhagic and Thrombotic Diseases, Foundation University Hospital "A. Gemelli", IRCCS, Catholic University of the Sacred Heart, Largo Agostino Gemelli 8, 00168, Rome, Italy.

Monica Sacco (M)

Center for Hemorrhagic and Thrombotic Diseases, Foundation University Hospital "A. Gemelli", IRCCS, Catholic University of the Sacred Heart, Largo Agostino Gemelli 8, 00168, Rome, Italy.

Michela Rossi (M)

Bone Physiopathology Research Unit, Translational Pediatrics e Clinical Genetics Research Division, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy.

Sara Terreri (S)

Bone Physiopathology Research Unit, Translational Pediatrics e Clinical Genetics Research Division, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy.

Jacopo Di Gregorio (J)

Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy.

Laura Di Giuseppe (L)

Department of Clinical, Internal, Anaesthesiological and Cardiovascular Sciences, "Sapienza" University, viale del Policlinico 155, 00161, Rome, Italy.

Matteo D'Agostini (M)

Clinical Laboratory Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy.

Ottavia Porzio (O)

Clinical Laboratory Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy.
Department of Experimental Medicine, Tor Vergata University of Rome, Rome, Italy.

Leonardo Di Gennaro (L)

Center for Hemorrhagic and Thrombotic Diseases, Foundation University Hospital "A. Gemelli", IRCCS, Catholic University of the Sacred Heart, Largo Agostino Gemelli 8, 00168, Rome, Italy.

Maira Tardugno (M)

Center for Hemorrhagic and Thrombotic Diseases, Foundation University Hospital "A. Gemelli", IRCCS, Catholic University of the Sacred Heart, Largo Agostino Gemelli 8, 00168, Rome, Italy.

Simone Pelle (S)

"Polo Sanitario San Feliciano-Villa Aurora" Clinic, Rome, Italy.

Salvatore Minisola (S)

Department of Clinical, Internal, Anaesthesiological and Cardiovascular Sciences, "Sapienza" University, viale del Policlinico 155, 00161, Rome, Italy.

Renato Maria Toniolo (RM)

Department of Orthopaedics and Traumatology, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy.

Matteo Luciani (M)

Pediatric Hematology/Oncology Department, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy.

Andrea Del Fattore (A)

Bone Physiopathology Research Unit, Translational Pediatrics e Clinical Genetics Research Division, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy.

Raimondo De Cristofaro (R)

Center for Hemorrhagic and Thrombotic Diseases, Foundation University Hospital "A. Gemelli", IRCCS, Catholic University of the Sacred Heart, Largo Agostino Gemelli 8, 00168, Rome, Italy. raimondo.decristofaro@unicatt.it.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH