Photosynthetic characteristics and genetic mapping of a yellow-green leaf mutant jym165 in soybean.
Photosynthesis
Soybean
Starch and sugar metabolism
Yellow-green leaf mutant
Journal
BMC plant biology
ISSN: 1471-2229
Titre abrégé: BMC Plant Biol
Pays: England
ID NLM: 100967807
Informations de publication
Date de publication:
26 Oct 2024
26 Oct 2024
Historique:
received:
18
07
2024
accepted:
21
10
2024
medline:
26
10
2024
pubmed:
26
10
2024
entrez:
25
10
2024
Statut:
epublish
Résumé
Leaves are important sites for photosynthesis and can convert inorganic substances into organic matter. Photosynthetic performance is an important factor affecting crop yield. Leaf colour is closely related to photosynthesis, and leaf colour mutants are considered an ideal material for studying photosynthesis. We obtained a yellow-green leaf mutant jym165, using ethyl methane sulfonate (EMS) mutagenesis. Physiological and biochemical analyses indicated that the contents of chlorophyll a, chlorophyll b, carotenoids, and total chlorophyll in the jym165 mutant decreased significantly compared with those in Jiyu47 (JY47). The abnormal chloroplast development of jym165 led to a decrease in net photosynthetic rate and starch content compared with that of JY47. However, quality traits analysis showed that the sum of oil and protein contents in jym165 was higher than that in JY47. In addition, the regional yield (seed spacing: 5 cm) of jym165 increased by 2.42% compared with that of JY47 under high planting density. Comparative transcriptome analysis showed that the yellow-green leaf phenotype was closely related to photosynthesis and starch and sugar metabolism pathways. Genetic analysis suggests that the yellow-green leaf phenotype is controlled by a single recessive nuclear gene. Using Mutmap sequencing, the candidate regions related of leaf colour was narrowed to 3.44 Mb on Chr 10. Abnormal chloroplast development in yellow-green mutants leads to a decrease in the photosynthetic pigment content and net photosynthetic rate, which affects the soybean photosynthesis pathway and starch and sugar metabolism pathways. Moreover, it has the potentiality to increase soybean yield under dense planting conditions. This study provides a useful reference for studying the molecular mechanisms underlying photosynthesis in soybean.
Sections du résumé
BACKGROUND
BACKGROUND
Leaves are important sites for photosynthesis and can convert inorganic substances into organic matter. Photosynthetic performance is an important factor affecting crop yield. Leaf colour is closely related to photosynthesis, and leaf colour mutants are considered an ideal material for studying photosynthesis.
RESULTS
RESULTS
We obtained a yellow-green leaf mutant jym165, using ethyl methane sulfonate (EMS) mutagenesis. Physiological and biochemical analyses indicated that the contents of chlorophyll a, chlorophyll b, carotenoids, and total chlorophyll in the jym165 mutant decreased significantly compared with those in Jiyu47 (JY47). The abnormal chloroplast development of jym165 led to a decrease in net photosynthetic rate and starch content compared with that of JY47. However, quality traits analysis showed that the sum of oil and protein contents in jym165 was higher than that in JY47. In addition, the regional yield (seed spacing: 5 cm) of jym165 increased by 2.42% compared with that of JY47 under high planting density. Comparative transcriptome analysis showed that the yellow-green leaf phenotype was closely related to photosynthesis and starch and sugar metabolism pathways. Genetic analysis suggests that the yellow-green leaf phenotype is controlled by a single recessive nuclear gene. Using Mutmap sequencing, the candidate regions related of leaf colour was narrowed to 3.44 Mb on Chr 10.
CONCLUSIONS
CONCLUSIONS
Abnormal chloroplast development in yellow-green mutants leads to a decrease in the photosynthetic pigment content and net photosynthetic rate, which affects the soybean photosynthesis pathway and starch and sugar metabolism pathways. Moreover, it has the potentiality to increase soybean yield under dense planting conditions. This study provides a useful reference for studying the molecular mechanisms underlying photosynthesis in soybean.
Identifiants
pubmed: 39455920
doi: 10.1186/s12870-024-05740-y
pii: 10.1186/s12870-024-05740-y
doi:
Substances chimiques
Chlorophyll
1406-65-1
Starch
9005-25-8
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
1009Subventions
Organisme : National Natural Science Foundation of China
ID : 32301751
Organisme : Natural Science Foundation of Hainan Province
ID : 324RC451
Informations de copyright
© 2024. The Author(s).
Références
Zhang T, Dong X, Yuan X, Hong Y, Zhang L, Zhang X, Chen S. Identification and characterization of CsSRP43, a major gene controlling leaf yellowing in cucumber. Hortic Res. 2022;9:uhac212.
pubmed: 36479584
pmcid: 9719040
doi: 10.1093/hr/uhac212
Wang F, Chen N, Shen S. iTRAQ-based quantitative proteomics analysis reveals the mechanism of golden-yellow leaf mutant in hybrid paper mulberry. Int J Mol Sci. 2021;23(1):127.
pubmed: 35008552
pmcid: 8745438
doi: 10.3390/ijms23010127
Zhang Z, Cui X, Wang Y, Wu J, Gu X, Lu T. The RNA editing factor WSP1 is essential for chloroplast development in rice. Mol Plant. 2017;10(1):86–98.
pubmed: 27622591
doi: 10.1016/j.molp.2016.08.009
Wu Z, Zhang X, He B, Diao L, Sheng S, Wang J, Guo X, Su N, Wang L, Jiang L, et al. A chlorophyll-deficient rice mutant with impaired chlorophyllide esterification in chlorophyll biosynthesis. Plant Physiol. 2007;145(1):29–40.
pubmed: 17535821
pmcid: 1976586
doi: 10.1104/pp.107.100321
Sakowska K, Alberti G, Genesio L, Peressotti A, Delle Vedove G, Gianelle D, Colombo R, Rodeghiero M, Panigada C, Juszczak R, et al. Leaf and canopy photosynthesis of a chlorophyll deficient soybean mutant. Plant Cell Environ. 2018;41(6):1427–37.
pubmed: 29498070
doi: 10.1111/pce.13180
Liu C, Zhu H, Xing Y, Tan J, Chen X, Zhang J, Peng H, Xie Q, Zhang Z. Albino Leaf 2 is involved in the splicing of chloroplast group I and II introns in rice. J Exp Bot. 2016;67(18):5339–47.
pubmed: 27543605
pmcid: 5049385
doi: 10.1093/jxb/erw296
Sandhu D, Coleman Z, Atkinson T, Rai KM, Mendu V. Genetics and physiology of the nuclearly inherited yellow foliar mutants in soybean. Front Plant Sci. 2018;9:471.
pubmed: 29696030
pmcid: 5904354
doi: 10.3389/fpls.2018.00471
Yang S, Wang X, Yan W, Zhang Y, Song P, Guo Y, Xie K, Hu J, Hou J, Wu Y, et al. Melon yellow-green plant (cmygp) encodes a Golden2-like transcription factor regulating chlorophyll synthesis and chloroplast development. Theor Appl Genet. 2023;136(4):66.
pubmed: 36949267
doi: 10.1007/s00122-023-04343-9
Lim GH, Kim SW, Ryu J, Kang SY, Kim JB, Kim SH. Upregulation of the MYB2 transcription factor is associated with increased accumulation of anthocyanin in the leaves of Dendrobium bigibbum. Int J Mol Sci. 2020, 21(16).
Cutolo EA, Guardini Z, Dall’Osto L, Bassi R. A paler shade of green: engineering cellular chlorophyll content to enhance photosynthesis in crowded environments. New Phytol. 2023;239(5):1567–83.
pubmed: 37282663
doi: 10.1111/nph.19064
Walker BJ, Drewry DT, Slattery RA, VanLoocke A, Cho YB, Ort DR. Chlorophyll can be reduced in crop canopies with little penalty to photosynthesis. Plant Physiol. 2018;176(2):1215–32.
pubmed: 29061904
doi: 10.1104/pp.17.01401
Slattery RA, VanLoocke A, Bernacchi CJ, Zhu XG, Ort DR. Photosynthesis, light use efficiency, and yield of reduced-chlorophyll soybean mutants in field conditions. Front Plant Sci. 2017;8:549.
pubmed: 28458677
pmcid: 5394119
doi: 10.3389/fpls.2017.00549
Junfei G, Zhenxiang Z, Zhikang, Li Y, Chen, Zhiqin RWJFC. Rice (Oryza sativa L.) with reduced chlorophyll content exhibit higher photosynthetic rate and efficiency, improved canopy light distribution, and greater yields than normally pigmented plants. Field Crop Res. 2017;200:58–70.
doi: 10.1016/j.fcr.2016.10.008
Ma X, Sun X, Li C, Huan R, Sun C, Wang Y, Xiao F, Wang Q, Chen P, Ma F, et al. Map-based cloning and characterization of the novel yellow-green leaf gene ys83 in rice (Oryza sativa). Plant Physiol Biochem. 2017;111:1–9.
pubmed: 27875742
doi: 10.1016/j.plaphy.2016.11.007
Fan L, Hou Y, Zheng L, Shi H, Liu Z, Wang Y, Li S, Liu L, Guo M, Yang Z, et al. Characterization and fine mapping of a yellow leaf gene regulating chlorophyll biosynthesis and chloroplast development in cotton (Gossypium arboreum). Gene. 2023;885:147712.
pubmed: 37579958
doi: 10.1016/j.gene.2023.147712
Yang M, Wan S, Chen J, Chen W, Wang Y, Li W, Wang M, Guan R. Mutation to a cytochrome P
pubmed: 37421327
doi: 10.1111/tpj.16382
Wu H, Shi N, An X, Liu C, Fu H, Cao L, Feng Y, Sun D, Zhang L. Candidate genes for yellow leaf color in common wheat (Triticum aestivum L.) and major related metabolic pathways according to transcriptome profiling. Int J Mol Sci. 2018, 19(6).
Ainsworth EA, Yendrek CR, Skoneczka JA, Long SP. Accelerating yield potential in soybean: potential targets for biotechnological improvement. Plant Cell Environ. 2012;35(1):38–52.
pubmed: 21689112
doi: 10.1111/j.1365-3040.2011.02378.x
Liu S, Zhang M, Feng F, Tian Z. Toward a Green Revolution for soybean. Mol Plant. 2020;13(5):688–97.
pubmed: 32171732
doi: 10.1016/j.molp.2020.03.002
Divi UK, Krishna P. Brassinosteroid: a biotechnological target for enhancing crop yield and stress tolerance. Nat Biotechnol. 2009;26(3–4):131–6.
Li S, Tian Y, Wu K, Ye Y, Yu J, Zhang J, Liu Q, Hu M, Li H, Tong Y, et al. Modulating plant growth-metabolism coordination for sustainable agriculture. Nature. 2018;560(7720):595–600.
pubmed: 30111841
pmcid: 6155485
doi: 10.1038/s41586-018-0415-5
Wellburn AR, Lichtenthaler H. Formulae and program to determine total carotenoids and chlorophylls a and B of leaf extracts in different solvents. Springer Neth. 1984: 9–12.
Kim D, Langmead B, Salzberg SL. HISAT: a fast spliced aligner with low memory requirements. Nat Methods. 2015;12(4):357–60.
pubmed: 25751142
pmcid: 4655817
doi: 10.1038/nmeth.3317
Love MI, Huber W, Anders S. Moderated estimation of Fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15(12):550.
pubmed: 25516281
pmcid: 4302049
doi: 10.1186/s13059-014-0550-8
Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2
pubmed: 11846609
doi: 10.1006/meth.2001.1262
Liu W, Deng Y, Zhou Y, Chen H, Dong Y, Wang N, Li X, Jameel A, Yang H, Zhang M, et al. Normalization for relative quantification of mRNA and microRNA in soybean exposed to various abiotic stresses. PLoS ONE. 2016;11(5):e0155606.
pubmed: 27176476
pmcid: 4866712
doi: 10.1371/journal.pone.0155606
Abe A, Kosugi S, Yoshida K, Natsume S, Takagi H, Kanzaki H, Matsumura H, Yoshida K, Mitsuoka C, Tamiru M, et al. Genome sequencing reveals agronomically important loci in rice using MutMap. Nat Biotechnol. 2012;30(2):174–8.
pubmed: 22267009
doi: 10.1038/nbt.2095
McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, Garimella K, Altshuler D, Gabriel S, Daly M, et al. The genome analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 2010;20(9):1297–303.
pubmed: 20644199
pmcid: 2928508
doi: 10.1101/gr.107524.110
Ma YY, Shi JC, Wang DJ, Liang X, Wei F, Gong CM, Qiu LJ, Zhou HC, Folta KM, Wen YQ, et al. A point mutation in the gene encoding magnesium chelatase I subunit influences strawberry leaf color and metabolism. Plant Physiol. 2023;192(4):2737–55.
pubmed: 37086480
doi: 10.1093/plphys/kiad247
Chen L, Yang W, Liu S, Meng Y, Zhu Z, Liang R, Cao K, Xie Y, Li X. Genome-wide analysis and identification of light-harvesting chlorophyll a/b binding (LHC) gene family and BSMV-VIGS silencing TaLHC86 reduced salt tolerance in wheat. Int J Biol Macromol. 2023;242(Pt 3):124930.
pubmed: 37236564
doi: 10.1016/j.ijbiomac.2023.124930
Nick S, Meurer J, Soll J, Ankele E. Nucleus-encoded light-harvesting chlorophyll a/b proteins are imported normally into chlorophyll b-free chloroplasts of Arabidopsis. Mol Plant. 2013;6(3):860–71.
pubmed: 23041941
doi: 10.1093/mp/sss113
Nie L, Zheng Y, Zhang L, Wu Y, Zhu S, Hou J, Chen G, Tang X, Wang C, Yuan L. Characterization and transcriptomic analysis of a novel yellow-green leaf wucai (Brassica campestris L.) germplasm. BMC Genomics. 2021;22(1):258.
pubmed: 33845769
pmcid: 8040211
doi: 10.1186/s12864-021-07573-7
Pietrzykowska M, Suorsa M, Semchonok DA, Tikkanen M, Boekema EJ, Aro EM, Jansson S. The light-harvesting chlorophyll a/b binding proteins Lhcb1 and Lhcb2 play complementary roles during state transitions in Arabidopsis. Plant Cell. 2014;26(9):3646–60.
pubmed: 25194026
pmcid: 4213150
doi: 10.1105/tpc.114.127373
Luo J, Abid M, Tu J, Gao P, Wang Z, Huang H. Genome-wide identification of the LHC gene family in kiwifruit and regulatory role of AcLhcb3.1/3.2 for chlorophyll a content. Int J Mol Sci. 2022, 23(12).
Han X, Han S, Li Y, Li K, Yang L, Ma D, Fang Z, Yin J, Zhu Y, Gong S. Double roles of light-harvesting chlorophyll a/b binding protein TaLhc2 in wheat stress tolerance and photosynthesis. Int J Biol Macromol. 2023;253(Pt 5):127215.
pubmed: 37793527
doi: 10.1016/j.ijbiomac.2023.127215
Renault H, Bassard JE, Hamberger B, Werck-Reichhart D. Cytochrome P450-mediated metabolic engineering: current progress and future challenges. Curr Opin Plant Biol. 2014;19:27–34.
pubmed: 24709279
doi: 10.1016/j.pbi.2014.03.004
Niu G, Guo Q, Wang J, Zhao S, He Y, Liu L. Structural basis for plant lutein biosynthesis from α-carotene. Proc Natl Acad Sci USA. 2020;117(25):14150–7.
pubmed: 32513704
pmcid: 7321987
doi: 10.1073/pnas.2001806117
Driscoll AW, Bitter NQ, Sandquist DR, Ehleringer JR. Multidecadal records of intrinsic water-use efficiency in the desert shrub Encelia farinosa reveal strong responses to climate change. Proc Natl Acad Sci USA. 2020;117(31):18161–8.
pubmed: 32719142
pmcid: 7414048
doi: 10.1073/pnas.2008345117
Jiang H, Ma QJ, Zhong MS, Gao HN, Li YY, Hao YJ. The apple palmitoyltransferase MdPAT16 influences sugar content and salt tolerance via an MdCBL1-MdCIPK13-MdSUT2.2 pathway. Plant J. 2021;106(3):689–705.
pubmed: 33548154
doi: 10.1111/tpj.15191
Li W, Meng R, Liu Y, Chen S, Jiang J, Wang L, Zhao S, Wang Z, Fang W, Chen F, et al. Heterografted chrysanthemums enhance salt stress tolerance by integrating reactive oxygen species, soluble sugar, and proline. Hortic Res. 2022;9:uhac073.
pubmed: 35712696
pmcid: 9198737
doi: 10.1093/hr/uhac073
Ozturk M, Turkyilmaz Unal B, García-Caparrós P, Khursheed A, Gul A, Hasanuzzaman M. Osmoregulation and its actions during the drought stress in plants. Physiol Plant. 2021;172(2):1321–35.
pubmed: 33280137
doi: 10.1111/ppl.13297
Wang A, Lam SK, Hao X, Li FY, Zong Y, Wang H, Li P. Elevated CO
pubmed: 30347376
doi: 10.1016/j.plaphy.2018.10.016
Mao H, Jian C, Cheng X, Chen B, Mei F, Li F, Zhang Y, Li S, Du L, Li T, et al. The wheat ABA receptor gene TaPYL1-1B contributes to drought tolerance and grain yield by increasing water-use efficiency. Plant Biotechnol J. 2022;20(5):846–61.
pubmed: 34890091
doi: 10.1111/pbi.13764
Liu Q, Wang Z, Yu S, Li W, Zhang M, Yang J, Li D, Yang J, Li C. Pu-miR172d regulates stomatal density and water-use efficiency via targeting PuGTL1 in poplar. J Exp Bot. 2021;72(4):1370–83.
pubmed: 33098429
doi: 10.1093/jxb/eraa493
Gao SQ, Chen M, Xia LQ, Xiu HJ, Xu ZS, Li LC, Zhao CP, Cheng XG, Ma YZ. A cotton (Gossypium hirsutum) DRE-binding transcription factor gene, GhDREB, confers enhanced tolerance to drought, high salt, and freezing stresses in transgenic wheat. Plant Cell Rep. 2009;28(2):301–11.
pubmed: 19005655
doi: 10.1007/s00299-008-0623-9
Cui Y, Li M, Yin X, Song S, Xu G, Wang M, Li C, Peng C, Xia X. OsDSSR1, a novel small peptide, enhances drought tolerance in transgenic rice. Plant Sci. 2018;270:85–96.
pubmed: 29576089
doi: 10.1016/j.plantsci.2018.02.015
Oosterom EJV, Acevedo EJE. Adaptation of barley (Hordeum vulgare L.) to harsh mediterranean environments. Euphytica. 1992;62(1):29–38.
doi: 10.1007/BF00036084
Tardy F, Créach A, Havaux M. Photosynthetic pigment concentration, organization and interconversions in a pale green Syrian landrace of barley (Hordeum vulgare L., Tadmor) adapted to harsh climatic conditions. Plant Cell Environ. 1998;21(5):479–89.
doi: 10.1046/j.1365-3040.1998.00293.x
Croce R, Carmo-Silva E, Cho YB, Ermakova M, Harbinson J, Lawson T, McCormick AJ, Niyogi KK, Ort DR, Patel-Tupper D et al. Perspectives on improving photosynthesis to increase crop yield. Plant Cell. 2024, koae132.
Duan Z, Zhang M, Zhang Z, Liang S, Fan L, Yang X, Yuan Y, Pan Y, Zhou G, Liu S, et al. Natural allelic variation of GmST05 controlling seed size and quality in soybean. Plant Biotechnol J. 2022;20(9):1807–18.
pubmed: 35642379
pmcid: 9398382
doi: 10.1111/pbi.13865
Teubner M, Fuß J, Kühn K, Krause K, Schmitz-Linneweber C. The RNA recognition motif protein CP33A is a global ligand of chloroplast mRNAs and is essential for plastid biogenesis and plant development. Plant J. 2017;89(3):472–85.
pubmed: 27743418
doi: 10.1111/tpj.13396
Kupsch C, Ruwe H, Gusewski S, Tillich M, Small I, Schmitz-Linneweber C. Arabidopsis chloroplast RNA binding proteins CP31A and CP29A associate with large transcript pools and confer cold stress tolerance by influencing multiple chloroplast RNA processing steps. Plant Cell. 2012;24(10):4266–80.
pubmed: 23110894
pmcid: 3517249
doi: 10.1105/tpc.112.103002
Okuzaki A, Rühle T, Leister D, Schmitz-Linneweber C. The acidic domain of the chloroplast RNA-binding protein CP31A supports cold tolerance in Arabidopsis thaliana. J Exp Bot. 2021;72(13):4904–14.
pubmed: 33872351
doi: 10.1093/jxb/erab165
Han JH, Lee K, Lee KH, Jung S, Jeon Y, Pai HS, Kang H. A nuclear-encoded chloroplast-targeted S1 RNA-binding domain protein affects chloroplast rRNA processing and is crucial for the normal growth of Arabidopsis thaliana. Plant J. 2015;83(2):277–89.
pubmed: 26031782
doi: 10.1111/tpj.12889
Ma L, Yang Y, Wang Y, Cheng K, Zhou X, Li J, Zhang J, Li R, Zhang L, Wang K, et al. SlRBP1 promotes translational efficiency via SleIF4A2 to maintain chloroplast function in tomato. Plant Cell. 2022;34(7):2747–64.
pubmed: 35385118
pmcid: 9252502
doi: 10.1093/plcell/koac104
Park YJ, Cho HK, Jung HJ, Ahn CS, Kang H, Pai HS. PRBP plays a role in plastid ribosomal RNA maturation and chloroplast biogenesis in Nicotiana Benthamiana. Planta. 2011;233(6):1073–85.
pubmed: 21290146
doi: 10.1007/s00425-011-1362-7
Members CNCB-NGDC, Partners. Database Resources of the National Genomics Data Center. China National Center for Bioinformation in 2022. Nucleic Acids Res. 2022;50(D1):D27–38.
doi: 10.1093/nar/gkab951