Photosynthetic characteristics and genetic mapping of a yellow-green leaf mutant jym165 in soybean.


Journal

BMC plant biology
ISSN: 1471-2229
Titre abrégé: BMC Plant Biol
Pays: England
ID NLM: 100967807

Informations de publication

Date de publication:
26 Oct 2024
Historique:
received: 18 07 2024
accepted: 21 10 2024
medline: 26 10 2024
pubmed: 26 10 2024
entrez: 25 10 2024
Statut: epublish

Résumé

Leaves are important sites for photosynthesis and can convert inorganic substances into organic matter. Photosynthetic performance is an important factor affecting crop yield. Leaf colour is closely related to photosynthesis, and leaf colour mutants are considered an ideal material for studying photosynthesis. We obtained a yellow-green leaf mutant jym165, using ethyl methane sulfonate (EMS) mutagenesis. Physiological and biochemical analyses indicated that the contents of chlorophyll a, chlorophyll b, carotenoids, and total chlorophyll in the jym165 mutant decreased significantly compared with those in Jiyu47 (JY47). The abnormal chloroplast development of jym165 led to a decrease in net photosynthetic rate and starch content compared with that of JY47. However, quality traits analysis showed that the sum of oil and protein contents in jym165 was higher than that in JY47. In addition, the regional yield (seed spacing: 5 cm) of jym165 increased by 2.42% compared with that of JY47 under high planting density. Comparative transcriptome analysis showed that the yellow-green leaf phenotype was closely related to photosynthesis and starch and sugar metabolism pathways. Genetic analysis suggests that the yellow-green leaf phenotype is controlled by a single recessive nuclear gene. Using Mutmap sequencing, the candidate regions related of leaf colour was narrowed to 3.44 Mb on Chr 10. Abnormal chloroplast development in yellow-green mutants leads to a decrease in the photosynthetic pigment content and net photosynthetic rate, which affects the soybean photosynthesis pathway and starch and sugar metabolism pathways. Moreover, it has the potentiality to increase soybean yield under dense planting conditions. This study provides a useful reference for studying the molecular mechanisms underlying photosynthesis in soybean.

Sections du résumé

BACKGROUND BACKGROUND
Leaves are important sites for photosynthesis and can convert inorganic substances into organic matter. Photosynthetic performance is an important factor affecting crop yield. Leaf colour is closely related to photosynthesis, and leaf colour mutants are considered an ideal material for studying photosynthesis.
RESULTS RESULTS
We obtained a yellow-green leaf mutant jym165, using ethyl methane sulfonate (EMS) mutagenesis. Physiological and biochemical analyses indicated that the contents of chlorophyll a, chlorophyll b, carotenoids, and total chlorophyll in the jym165 mutant decreased significantly compared with those in Jiyu47 (JY47). The abnormal chloroplast development of jym165 led to a decrease in net photosynthetic rate and starch content compared with that of JY47. However, quality traits analysis showed that the sum of oil and protein contents in jym165 was higher than that in JY47. In addition, the regional yield (seed spacing: 5 cm) of jym165 increased by 2.42% compared with that of JY47 under high planting density. Comparative transcriptome analysis showed that the yellow-green leaf phenotype was closely related to photosynthesis and starch and sugar metabolism pathways. Genetic analysis suggests that the yellow-green leaf phenotype is controlled by a single recessive nuclear gene. Using Mutmap sequencing, the candidate regions related of leaf colour was narrowed to 3.44 Mb on Chr 10.
CONCLUSIONS CONCLUSIONS
Abnormal chloroplast development in yellow-green mutants leads to a decrease in the photosynthetic pigment content and net photosynthetic rate, which affects the soybean photosynthesis pathway and starch and sugar metabolism pathways. Moreover, it has the potentiality to increase soybean yield under dense planting conditions. This study provides a useful reference for studying the molecular mechanisms underlying photosynthesis in soybean.

Identifiants

pubmed: 39455920
doi: 10.1186/s12870-024-05740-y
pii: 10.1186/s12870-024-05740-y
doi:

Substances chimiques

Chlorophyll 1406-65-1
Starch 9005-25-8

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

1009

Subventions

Organisme : National Natural Science Foundation of China
ID : 32301751
Organisme : Natural Science Foundation of Hainan Province
ID : 324RC451

Informations de copyright

© 2024. The Author(s).

Références

Zhang T, Dong X, Yuan X, Hong Y, Zhang L, Zhang X, Chen S. Identification and characterization of CsSRP43, a major gene controlling leaf yellowing in cucumber. Hortic Res. 2022;9:uhac212.
pubmed: 36479584 pmcid: 9719040 doi: 10.1093/hr/uhac212
Wang F, Chen N, Shen S. iTRAQ-based quantitative proteomics analysis reveals the mechanism of golden-yellow leaf mutant in hybrid paper mulberry. Int J Mol Sci. 2021;23(1):127.
pubmed: 35008552 pmcid: 8745438 doi: 10.3390/ijms23010127
Zhang Z, Cui X, Wang Y, Wu J, Gu X, Lu T. The RNA editing factor WSP1 is essential for chloroplast development in rice. Mol Plant. 2017;10(1):86–98.
pubmed: 27622591 doi: 10.1016/j.molp.2016.08.009
Wu Z, Zhang X, He B, Diao L, Sheng S, Wang J, Guo X, Su N, Wang L, Jiang L, et al. A chlorophyll-deficient rice mutant with impaired chlorophyllide esterification in chlorophyll biosynthesis. Plant Physiol. 2007;145(1):29–40.
pubmed: 17535821 pmcid: 1976586 doi: 10.1104/pp.107.100321
Sakowska K, Alberti G, Genesio L, Peressotti A, Delle Vedove G, Gianelle D, Colombo R, Rodeghiero M, Panigada C, Juszczak R, et al. Leaf and canopy photosynthesis of a chlorophyll deficient soybean mutant. Plant Cell Environ. 2018;41(6):1427–37.
pubmed: 29498070 doi: 10.1111/pce.13180
Liu C, Zhu H, Xing Y, Tan J, Chen X, Zhang J, Peng H, Xie Q, Zhang Z. Albino Leaf 2 is involved in the splicing of chloroplast group I and II introns in rice. J Exp Bot. 2016;67(18):5339–47.
pubmed: 27543605 pmcid: 5049385 doi: 10.1093/jxb/erw296
Sandhu D, Coleman Z, Atkinson T, Rai KM, Mendu V. Genetics and physiology of the nuclearly inherited yellow foliar mutants in soybean. Front Plant Sci. 2018;9:471.
pubmed: 29696030 pmcid: 5904354 doi: 10.3389/fpls.2018.00471
Yang S, Wang X, Yan W, Zhang Y, Song P, Guo Y, Xie K, Hu J, Hou J, Wu Y, et al. Melon yellow-green plant (cmygp) encodes a Golden2-like transcription factor regulating chlorophyll synthesis and chloroplast development. Theor Appl Genet. 2023;136(4):66.
pubmed: 36949267 doi: 10.1007/s00122-023-04343-9
Lim GH, Kim SW, Ryu J, Kang SY, Kim JB, Kim SH. Upregulation of the MYB2 transcription factor is associated with increased accumulation of anthocyanin in the leaves of Dendrobium bigibbum. Int J Mol Sci. 2020, 21(16).
Cutolo EA, Guardini Z, Dall’Osto L, Bassi R. A paler shade of green: engineering cellular chlorophyll content to enhance photosynthesis in crowded environments. New Phytol. 2023;239(5):1567–83.
pubmed: 37282663 doi: 10.1111/nph.19064
Walker BJ, Drewry DT, Slattery RA, VanLoocke A, Cho YB, Ort DR. Chlorophyll can be reduced in crop canopies with little penalty to photosynthesis. Plant Physiol. 2018;176(2):1215–32.
pubmed: 29061904 doi: 10.1104/pp.17.01401
Slattery RA, VanLoocke A, Bernacchi CJ, Zhu XG, Ort DR. Photosynthesis, light use efficiency, and yield of reduced-chlorophyll soybean mutants in field conditions. Front Plant Sci. 2017;8:549.
pubmed: 28458677 pmcid: 5394119 doi: 10.3389/fpls.2017.00549
Junfei G, Zhenxiang Z, Zhikang, Li Y, Chen, Zhiqin RWJFC. Rice (Oryza sativa L.) with reduced chlorophyll content exhibit higher photosynthetic rate and efficiency, improved canopy light distribution, and greater yields than normally pigmented plants. Field Crop Res. 2017;200:58–70.
doi: 10.1016/j.fcr.2016.10.008
Ma X, Sun X, Li C, Huan R, Sun C, Wang Y, Xiao F, Wang Q, Chen P, Ma F, et al. Map-based cloning and characterization of the novel yellow-green leaf gene ys83 in rice (Oryza sativa). Plant Physiol Biochem. 2017;111:1–9.
pubmed: 27875742 doi: 10.1016/j.plaphy.2016.11.007
Fan L, Hou Y, Zheng L, Shi H, Liu Z, Wang Y, Li S, Liu L, Guo M, Yang Z, et al. Characterization and fine mapping of a yellow leaf gene regulating chlorophyll biosynthesis and chloroplast development in cotton (Gossypium arboreum). Gene. 2023;885:147712.
pubmed: 37579958 doi: 10.1016/j.gene.2023.147712
Yang M, Wan S, Chen J, Chen W, Wang Y, Li W, Wang M, Guan R. Mutation to a cytochrome P
pubmed: 37421327 doi: 10.1111/tpj.16382
Wu H, Shi N, An X, Liu C, Fu H, Cao L, Feng Y, Sun D, Zhang L. Candidate genes for yellow leaf color in common wheat (Triticum aestivum L.) and major related metabolic pathways according to transcriptome profiling. Int J Mol Sci. 2018, 19(6).
Ainsworth EA, Yendrek CR, Skoneczka JA, Long SP. Accelerating yield potential in soybean: potential targets for biotechnological improvement. Plant Cell Environ. 2012;35(1):38–52.
pubmed: 21689112 doi: 10.1111/j.1365-3040.2011.02378.x
Liu S, Zhang M, Feng F, Tian Z. Toward a Green Revolution for soybean. Mol Plant. 2020;13(5):688–97.
pubmed: 32171732 doi: 10.1016/j.molp.2020.03.002
Divi UK, Krishna P. Brassinosteroid: a biotechnological target for enhancing crop yield and stress tolerance. Nat Biotechnol. 2009;26(3–4):131–6.
Li S, Tian Y, Wu K, Ye Y, Yu J, Zhang J, Liu Q, Hu M, Li H, Tong Y, et al. Modulating plant growth-metabolism coordination for sustainable agriculture. Nature. 2018;560(7720):595–600.
pubmed: 30111841 pmcid: 6155485 doi: 10.1038/s41586-018-0415-5
Wellburn AR, Lichtenthaler H. Formulae and program to determine total carotenoids and chlorophylls a and B of leaf extracts in different solvents. Springer Neth. 1984: 9–12.
Kim D, Langmead B, Salzberg SL. HISAT: a fast spliced aligner with low memory requirements. Nat Methods. 2015;12(4):357–60.
pubmed: 25751142 pmcid: 4655817 doi: 10.1038/nmeth.3317
Love MI, Huber W, Anders S. Moderated estimation of Fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15(12):550.
pubmed: 25516281 pmcid: 4302049 doi: 10.1186/s13059-014-0550-8
Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2
pubmed: 11846609 doi: 10.1006/meth.2001.1262
Liu W, Deng Y, Zhou Y, Chen H, Dong Y, Wang N, Li X, Jameel A, Yang H, Zhang M, et al. Normalization for relative quantification of mRNA and microRNA in soybean exposed to various abiotic stresses. PLoS ONE. 2016;11(5):e0155606.
pubmed: 27176476 pmcid: 4866712 doi: 10.1371/journal.pone.0155606
Abe A, Kosugi S, Yoshida K, Natsume S, Takagi H, Kanzaki H, Matsumura H, Yoshida K, Mitsuoka C, Tamiru M, et al. Genome sequencing reveals agronomically important loci in rice using MutMap. Nat Biotechnol. 2012;30(2):174–8.
pubmed: 22267009 doi: 10.1038/nbt.2095
McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, Garimella K, Altshuler D, Gabriel S, Daly M, et al. The genome analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 2010;20(9):1297–303.
pubmed: 20644199 pmcid: 2928508 doi: 10.1101/gr.107524.110
Ma YY, Shi JC, Wang DJ, Liang X, Wei F, Gong CM, Qiu LJ, Zhou HC, Folta KM, Wen YQ, et al. A point mutation in the gene encoding magnesium chelatase I subunit influences strawberry leaf color and metabolism. Plant Physiol. 2023;192(4):2737–55.
pubmed: 37086480 doi: 10.1093/plphys/kiad247
Chen L, Yang W, Liu S, Meng Y, Zhu Z, Liang R, Cao K, Xie Y, Li X. Genome-wide analysis and identification of light-harvesting chlorophyll a/b binding (LHC) gene family and BSMV-VIGS silencing TaLHC86 reduced salt tolerance in wheat. Int J Biol Macromol. 2023;242(Pt 3):124930.
pubmed: 37236564 doi: 10.1016/j.ijbiomac.2023.124930
Nick S, Meurer J, Soll J, Ankele E. Nucleus-encoded light-harvesting chlorophyll a/b proteins are imported normally into chlorophyll b-free chloroplasts of Arabidopsis. Mol Plant. 2013;6(3):860–71.
pubmed: 23041941 doi: 10.1093/mp/sss113
Nie L, Zheng Y, Zhang L, Wu Y, Zhu S, Hou J, Chen G, Tang X, Wang C, Yuan L. Characterization and transcriptomic analysis of a novel yellow-green leaf wucai (Brassica campestris L.) germplasm. BMC Genomics. 2021;22(1):258.
pubmed: 33845769 pmcid: 8040211 doi: 10.1186/s12864-021-07573-7
Pietrzykowska M, Suorsa M, Semchonok DA, Tikkanen M, Boekema EJ, Aro EM, Jansson S. The light-harvesting chlorophyll a/b binding proteins Lhcb1 and Lhcb2 play complementary roles during state transitions in Arabidopsis. Plant Cell. 2014;26(9):3646–60.
pubmed: 25194026 pmcid: 4213150 doi: 10.1105/tpc.114.127373
Luo J, Abid M, Tu J, Gao P, Wang Z, Huang H. Genome-wide identification of the LHC gene family in kiwifruit and regulatory role of AcLhcb3.1/3.2 for chlorophyll a content. Int J Mol Sci. 2022, 23(12).
Han X, Han S, Li Y, Li K, Yang L, Ma D, Fang Z, Yin J, Zhu Y, Gong S. Double roles of light-harvesting chlorophyll a/b binding protein TaLhc2 in wheat stress tolerance and photosynthesis. Int J Biol Macromol. 2023;253(Pt 5):127215.
pubmed: 37793527 doi: 10.1016/j.ijbiomac.2023.127215
Renault H, Bassard JE, Hamberger B, Werck-Reichhart D. Cytochrome P450-mediated metabolic engineering: current progress and future challenges. Curr Opin Plant Biol. 2014;19:27–34.
pubmed: 24709279 doi: 10.1016/j.pbi.2014.03.004
Niu G, Guo Q, Wang J, Zhao S, He Y, Liu L. Structural basis for plant lutein biosynthesis from α-carotene. Proc Natl Acad Sci USA. 2020;117(25):14150–7.
pubmed: 32513704 pmcid: 7321987 doi: 10.1073/pnas.2001806117
Driscoll AW, Bitter NQ, Sandquist DR, Ehleringer JR. Multidecadal records of intrinsic water-use efficiency in the desert shrub Encelia farinosa reveal strong responses to climate change. Proc Natl Acad Sci USA. 2020;117(31):18161–8.
pubmed: 32719142 pmcid: 7414048 doi: 10.1073/pnas.2008345117
Jiang H, Ma QJ, Zhong MS, Gao HN, Li YY, Hao YJ. The apple palmitoyltransferase MdPAT16 influences sugar content and salt tolerance via an MdCBL1-MdCIPK13-MdSUT2.2 pathway. Plant J. 2021;106(3):689–705.
pubmed: 33548154 doi: 10.1111/tpj.15191
Li W, Meng R, Liu Y, Chen S, Jiang J, Wang L, Zhao S, Wang Z, Fang W, Chen F, et al. Heterografted chrysanthemums enhance salt stress tolerance by integrating reactive oxygen species, soluble sugar, and proline. Hortic Res. 2022;9:uhac073.
pubmed: 35712696 pmcid: 9198737 doi: 10.1093/hr/uhac073
Ozturk M, Turkyilmaz Unal B, García-Caparrós P, Khursheed A, Gul A, Hasanuzzaman M. Osmoregulation and its actions during the drought stress in plants. Physiol Plant. 2021;172(2):1321–35.
pubmed: 33280137 doi: 10.1111/ppl.13297
Wang A, Lam SK, Hao X, Li FY, Zong Y, Wang H, Li P. Elevated CO
pubmed: 30347376 doi: 10.1016/j.plaphy.2018.10.016
Mao H, Jian C, Cheng X, Chen B, Mei F, Li F, Zhang Y, Li S, Du L, Li T, et al. The wheat ABA receptor gene TaPYL1-1B contributes to drought tolerance and grain yield by increasing water-use efficiency. Plant Biotechnol J. 2022;20(5):846–61.
pubmed: 34890091 doi: 10.1111/pbi.13764
Liu Q, Wang Z, Yu S, Li W, Zhang M, Yang J, Li D, Yang J, Li C. Pu-miR172d regulates stomatal density and water-use efficiency via targeting PuGTL1 in poplar. J Exp Bot. 2021;72(4):1370–83.
pubmed: 33098429 doi: 10.1093/jxb/eraa493
Gao SQ, Chen M, Xia LQ, Xiu HJ, Xu ZS, Li LC, Zhao CP, Cheng XG, Ma YZ. A cotton (Gossypium hirsutum) DRE-binding transcription factor gene, GhDREB, confers enhanced tolerance to drought, high salt, and freezing stresses in transgenic wheat. Plant Cell Rep. 2009;28(2):301–11.
pubmed: 19005655 doi: 10.1007/s00299-008-0623-9
Cui Y, Li M, Yin X, Song S, Xu G, Wang M, Li C, Peng C, Xia X. OsDSSR1, a novel small peptide, enhances drought tolerance in transgenic rice. Plant Sci. 2018;270:85–96.
pubmed: 29576089 doi: 10.1016/j.plantsci.2018.02.015
Oosterom EJV, Acevedo EJE. Adaptation of barley (Hordeum vulgare L.) to harsh mediterranean environments. Euphytica. 1992;62(1):29–38.
doi: 10.1007/BF00036084
Tardy F, Créach A, Havaux M. Photosynthetic pigment concentration, organization and interconversions in a pale green Syrian landrace of barley (Hordeum vulgare L., Tadmor) adapted to harsh climatic conditions. Plant Cell Environ. 1998;21(5):479–89.
doi: 10.1046/j.1365-3040.1998.00293.x
Croce R, Carmo-Silva E, Cho YB, Ermakova M, Harbinson J, Lawson T, McCormick AJ, Niyogi KK, Ort DR, Patel-Tupper D et al. Perspectives on improving photosynthesis to increase crop yield. Plant Cell. 2024, koae132.
Duan Z, Zhang M, Zhang Z, Liang S, Fan L, Yang X, Yuan Y, Pan Y, Zhou G, Liu S, et al. Natural allelic variation of GmST05 controlling seed size and quality in soybean. Plant Biotechnol J. 2022;20(9):1807–18.
pubmed: 35642379 pmcid: 9398382 doi: 10.1111/pbi.13865
Teubner M, Fuß J, Kühn K, Krause K, Schmitz-Linneweber C. The RNA recognition motif protein CP33A is a global ligand of chloroplast mRNAs and is essential for plastid biogenesis and plant development. Plant J. 2017;89(3):472–85.
pubmed: 27743418 doi: 10.1111/tpj.13396
Kupsch C, Ruwe H, Gusewski S, Tillich M, Small I, Schmitz-Linneweber C. Arabidopsis chloroplast RNA binding proteins CP31A and CP29A associate with large transcript pools and confer cold stress tolerance by influencing multiple chloroplast RNA processing steps. Plant Cell. 2012;24(10):4266–80.
pubmed: 23110894 pmcid: 3517249 doi: 10.1105/tpc.112.103002
Okuzaki A, Rühle T, Leister D, Schmitz-Linneweber C. The acidic domain of the chloroplast RNA-binding protein CP31A supports cold tolerance in Arabidopsis thaliana. J Exp Bot. 2021;72(13):4904–14.
pubmed: 33872351 doi: 10.1093/jxb/erab165
Han JH, Lee K, Lee KH, Jung S, Jeon Y, Pai HS, Kang H. A nuclear-encoded chloroplast-targeted S1 RNA-binding domain protein affects chloroplast rRNA processing and is crucial for the normal growth of Arabidopsis thaliana. Plant J. 2015;83(2):277–89.
pubmed: 26031782 doi: 10.1111/tpj.12889
Ma L, Yang Y, Wang Y, Cheng K, Zhou X, Li J, Zhang J, Li R, Zhang L, Wang K, et al. SlRBP1 promotes translational efficiency via SleIF4A2 to maintain chloroplast function in tomato. Plant Cell. 2022;34(7):2747–64.
pubmed: 35385118 pmcid: 9252502 doi: 10.1093/plcell/koac104
Park YJ, Cho HK, Jung HJ, Ahn CS, Kang H, Pai HS. PRBP plays a role in plastid ribosomal RNA maturation and chloroplast biogenesis in Nicotiana Benthamiana. Planta. 2011;233(6):1073–85.
pubmed: 21290146 doi: 10.1007/s00425-011-1362-7
Members CNCB-NGDC, Partners. Database Resources of the National Genomics Data Center. China National Center for Bioinformation in 2022. Nucleic Acids Res. 2022;50(D1):D27–38.
doi: 10.1093/nar/gkab951

Auteurs

Yu Zhao (Y)

College of Life Sciences, Jilin Agricultural University, Changchun, 130118, China.

Mengxue Zhu (M)

School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, 572025, China.

Hongtao Gao (H)

School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, 572025, China.

Yonggang Zhou (Y)

School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, 572025, China.

Wenbo Yao (W)

School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, 572025, China.

Yan Zhao (Y)

School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, 572025, China.

Wenping Zhang (W)

School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, 572025, China.

Chen Feng (C)

School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, 572025, China.

Yaxin Li (Y)

School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, 572025, China.

Yan Jin (Y)

School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, 572025, China.

Keheng Xu (K)

School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, 572025, China. xh312319@163.com.

Articles similaires

Photosynthesis Ribulose-Bisphosphate Carboxylase Carbon Dioxide Molecular Dynamics Simulation Cyanobacteria
T-Lymphocytes, Regulatory Lung Neoplasms Proto-Oncogene Proteins p21(ras) Animals Humans

Pathogenic mitochondrial DNA mutations inhibit melanoma metastasis.

Spencer D Shelton, Sara House, Luiza Martins Nascentes Melo et al.
1.00
DNA, Mitochondrial Humans Melanoma Mutation Neoplasm Metastasis

Prevalence and implications of fragile X premutation screening in Thailand.

Areerat Hnoonual, Sunita Kaewfai, Chanin Limwongse et al.
1.00
Humans Fragile X Mental Retardation Protein Thailand Male Female

Classifications MeSH