Genetic loci associated with sorghum drought tolerance in multiple environments and their sensitivity to environmental covariables.


Journal

TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik
ISSN: 1432-2242
Titre abrégé: Theor Appl Genet
Pays: Germany
ID NLM: 0145600

Informations de publication

Date de publication:
26 Oct 2024
Historique:
received: 08 04 2024
accepted: 09 10 2024
medline: 27 10 2024
pubmed: 27 10 2024
entrez: 27 10 2024
Statut: epublish

Résumé

Climate change can limit yields of naturally resilient crops, like sorghum, challenging global food security. Agriculture under an erratic climate requires tapping into a reservoir of flexible adaptive loci that can lead to lasting yield stability under multiple abiotic stress conditions. Domesticated in the hot and dry regions of Africa, sorghum is considered a harsh crop, which is adapted to important stress factors closely related to climate change. To investigate the genetic basis of drought stress adaptation in sorghum, we used a multi-environment multi-locus genome-wide association study (MEML-GWAS) in a subset of a diverse sorghum association panel (SAP) phenotyped for performance both under well-watered and water stress conditions. We selected environments in Brazil that foreshadow agriculture where both drought and temperature stresses coincide as in many tropical agricultural frontiers. Drought reduced average grain yield (Gy) by up to 50% and also affected flowering time (Ft) and plant height (Ph). We found 15 markers associated with Gy on all sorghum chromosomes except for chromosomes 7 and 9, in addition to loci associated with phenology traits. Loci associated with Gy strongly interacted with the environment in a complex way, while loci associated with phenology traits were less affected by G × E. Studying environmental covariables potentially underpinning G × E, increases in relative humidity and evapotranspiration favored and disfavored grain yield, respectively. High temperatures influenced G × E and reduced sorghum yields, with a ~ 100 kg ha

Identifiants

pubmed: 39461923
doi: 10.1007/s00122-024-04761-3
pii: 10.1007/s00122-024-04761-3
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

259

Subventions

Organisme : Fundação de Amparo à Pesquisa do Estado de Minas Gerais
ID : RED-00205-22
Organisme : National Council for Scientific and Technological Development (CNPq)
ID : PQ2022
Organisme : Embrapa
ID : Embrapa SEG

Informations de copyright

© 2024. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.

Références

Abreha KB, Enyew M, Carlsson AS et al (2022) Sorghum in dryland: morphological, physiological, and molecular responses of sorghum under drought stress. Planta 255:20. https://doi.org/10.1007/s00425-021-03799-7
doi: 10.1007/s00425-021-03799-7
Akaike H (1973) Information theory and an extension of the maximum likelihood principle, [w:] proceedings of the 2nd international symposium on information, bn petrow, f. Czaki, Akademiai Kiado, Budapest
Alvares CA, Stape JL, Sentelhas PC et al (2013) Köppen’s climate classification map for Brazil. Meteorol Z 22:711–728
doi: 10.1127/0941-2948/2013/0507
Amadeu RR, Cellon C, Olmestead JW et al (2016) AGHmatrix: R package to construct relationship matrices for autotetraploid and diploid species: a blueberry example. Plant Genome 9:1–10
doi: 10.3835/plantgenome2016.01.0009
Bland JM, Altman DG (1995) Multiple significance tests: the Bonferroni method. BMJ 310:170
doi: 10.1136/bmj.310.6973.170 pubmed: 7833759 pmcid: 2548561
Boer MP, Wright D, Feng L et al (2007) A Mixed-model quantitative trait loci (QTL) analysis for multiple-environment trial data using environmental covariables for QTL-by-environment interactions, with an example in maize. Genetics 177:1801–1813. https://doi.org/10.1534/genetics.107.071068
doi: 10.1534/genetics.107.071068 pubmed: 17947443 pmcid: 2147942
Borrell AK, Wong ACS, George-Jaeggli B et al (2022) Genetic modification of PIN genes induces causal mechanisms of stay-green drought adaptation phenotype. J Exp Bot 73:6711–6726. https://doi.org/10.1093/jxb/erac336
doi: 10.1093/jxb/erac336 pubmed: 35961690 pmcid: 9629789
Bouchet S, Pot D, Deu M et al (2012) Genetic structure, linkage disequilibrium and signature of selection in sorghum: lessons from physically anchored DArT markers. PLoS ONE 7:e33470
doi: 10.1371/journal.pone.0033470 pubmed: 22428056 pmcid: 3302775
Bradbury PJ, Zhang Z, Kroon DE et al (2007) TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics 23:2633–2635. https://doi.org/10.1093/bioinformatics/btm308
doi: 10.1093/bioinformatics/btm308 pubmed: 17586829
Brien C (2021) asremlPlus: Augments “ASReml-R” in Fitting mixed models and packages generally in exploring prediction differences. R package version 4.2-32
Browning BL, Browning SR (2016) Genotype imputation with millions of reference samples. Am J Hum Genet 98:116–126
doi: 10.1016/j.ajhg.2015.11.020 pubmed: 26748515 pmcid: 4716681
Butler DG, Cullis BR, Gilmour AR, et al (2017) ASReml-R reference manual version 4. VSN International Ltd, Hemel Hempstead, HP1 1ES, UK
Carcedo AJP, Pardo PA, Gambin BL (2017) Secondary traits explaining sorghum genotype by environment interactions for grain yield. Crop Pasture Sci 68:599. https://doi.org/10.1071/CP17015
doi: 10.1071/CP17015
Casa AM, Pressoir G, Brown PJ et al (2008) Community resources and strategies for association mapping in sorghum. Crop Sci 48:30–40. https://doi.org/10.2135/cropsci2007.02.0080
doi: 10.2135/cropsci2007.02.0080
Chadalavada K, Kumari BDR, Kumar TS (2021) Sorghum mitigates climate variability and change on crop yield and quality. Planta 253:113. https://doi.org/10.1007/s00425-021-03631-2
doi: 10.1007/s00425-021-03631-2 pubmed: 33928417
Cullis BR, Smith AB, Coombes NE (2006) On the design of early generation variety trials with correlated data. J Agric Biol Environ Stat 11:381–393
doi: 10.1198/108571106X154443
Da Silva KJ, Teodoro PE, Da Silva MJ et al (2021) Identification of mega-environments for grain sorghum in Brazil using GGE biplot methodology. Agron J 113:3019–3030. https://doi.org/10.1002/agj2.20707
doi: 10.1002/agj2.20707
Damesa TM, Hartung J, Gowda M et al (2019) Comparison of weighted and unweighted stage-wise analysis for genome-wide association studies and genomic selection. Crop Sci 59:2572–2584
doi: 10.2135/cropsci2019.04.0209
Dumble S (2022) GGEBiplots: GGE Biplots with “ggplot2”
Elshire RJ, Glaubitz JC, Sun Q et al (2011) A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS ONE 6:e19379
doi: 10.1371/journal.pone.0019379 pubmed: 21573248 pmcid: 3087801
Enyew M, Feyissa T, Geleta M et al (2021) Genotype by environment interaction, correlation, AMMI, GGE biplot and cluster analysis for grain yield and other agronomic traits in sorghum (Sorghum bicolor L. Moench). PLoS ONE 16:e0258211. https://doi.org/10.1371/journal.pone.0258211
doi: 10.1371/journal.pone.0258211 pubmed: 34610051 pmcid: 8491923
Gauch HG Jr (1988) Model selection and validation for yield trials with interaction. Biometrics 44:705–715
doi: 10.2307/2531585
Gauch HG, Zobel RW (1988) Predictive and postdictive success of statistical analyses of yield trials. Theoret Appl Genet 76:1–10. https://doi.org/10.1007/BF00288824
doi: 10.1007/BF00288824
Glaubitz JC, Casstevens TM, Lu F et al (2014) TASSEL-GBS: a high capacity genotyping by sequencing analysis pipeline. PLoS ONE 9:1–11. https://doi.org/10.1371/journal.pone.0090346
doi: 10.1371/journal.pone.0090346
Gomide RL, Durães FO, Guimarães CM, et al (2011) Drought tolerance phenotyping in crops under contrasting target environments: procedures and practices. In: Monneveux P, Ribaut JM (eds) Drought phenotyping in crops: from theory to practice. CGIAR Generation Challenge Programme, Texcoco pp 51–91
Gupta A, Rico-Medina A, Caño-Delgado AI (2020) The physiology of plant responses to drought. Science 368:266–269. https://doi.org/10.1126/science.aaz7614
doi: 10.1126/science.aaz7614 pubmed: 32299946
Hariprasanna K, Rakshit S (2016) Economic importance of sorghum. In: Rakshit S, Wang Y-H (eds) The sorghum genome. Springer International Publishing, Cham, pp 1–25
Harlan JR, De Wet JMJ (1972) A Simplified classification of cultivated sorghum
doi: 10.2135/cropsci1972.0011183X001200020005x
Harrell Jr FE (2019) Hmisc: harrell miscellaneous. R package version 4.3
Harris K, Subudhi P, Borrell A et al (2006) Sorghum stay-green QTL individually reduce post-flowering drought-induced leaf senescence. J Exp Bot 58:327–338. https://doi.org/10.1093/jxb/erl225
doi: 10.1093/jxb/erl225 pubmed: 17175550
Heslot N, Akdemir D, Sorrells ME, Jannink J-L (2014) Integrating environmental covariates and crop modeling into the genomic selection framework to predict genotype by environment interactions. Theor Appl Genet 127:463–480. https://doi.org/10.1007/s00122-013-2231-5
doi: 10.1007/s00122-013-2231-5 pubmed: 24264761
Hossain MdS, Islam MdN, Rahman MdM et al (2022) Sorghum: a prospective crop for climatic vulnerability, food and nutritional security. J Agric Food Res 8:100300. https://doi.org/10.1016/j.jafr.2022.100300
doi: 10.1016/j.jafr.2022.100300
Hu Z, Olatoye MO, Marla S, Morris GP (2019) An integrated genotyping-by-sequencing polymorphism map for over 10,000 sorghum genotypes. Plant Genome 12:180044
doi: 10.3835/plantgenome2018.06.0044
Hufnagel B, de Sousa SM, Assis L et al (2014) Duplicate and conquer: multiple homologs of PHOSPHORUS-STARVATION TOLERANCE1 enhance phosphorus acquisition and sorghum performance on low-phosphorus soils. Plant Physiol 166:659–677
doi: 10.1104/pp.114.243949 pubmed: 25189534 pmcid: 4213096
Ilyas M, Hussain Shah S, Fujita Y et al (2022) OsTZF1, a CCCH-tandem zinc finger protein gene, driven under own promoter produces no pleiotropic effects and confers salt and drought tolerance in rice. Plant Signal Behav 17:2142725. https://doi.org/10.1080/15592324.2022.2142725
doi: 10.1080/15592324.2022.2142725 pubmed: 36398733 pmcid: 9677997
Intergovernmental Panel On Climate Change (Ipcc) (2023) Climate Change 2022 – Impacts, adaptation and vulnerability: working group ii contribution to the sixth assessment report of the intergovernmental panel on climate change, 1st edn. Cambridge University Press
Jiang S-C, Mei C, Liang S et al (2015) Crucial roles of the pentatricopeptide repeat protein SOAR1 in Arabidopsis response to drought, salt and cold stresses. Plant Mol Biol 88:369–385. https://doi.org/10.1007/s11103-015-0327-9
doi: 10.1007/s11103-015-0327-9 pubmed: 26093896 pmcid: 4486114
Johnson SC (1967) Hierarchical clustering schemes. Psychometrika 32:241–254
doi: 10.1007/BF02289588 pubmed: 5234703
Lance GN, Williams WT (1967) A general theory of classificatory sorting strategies: 1. Hierarchical Syst Comput J 9:373–380. https://doi.org/10.1093/comjnl/9.4.373
doi: 10.1093/comjnl/9.4.373
Leng G, Hall J (2019) Crop yield sensitivity of global major agricultural countries to droughts and the projected changes in the future. Sci Total Environ 654:811–821. https://doi.org/10.1016/j.scitotenv.2018.10.434
doi: 10.1016/j.scitotenv.2018.10.434 pubmed: 30448671 pmcid: 6341212
Li H, Durbin R (2009) Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25:1754–1760
doi: 10.1093/bioinformatics/btp324 pubmed: 19451168 pmcid: 2705234
Liu W, Li Y, Yuan H et al (2017) WD40-REPEAT 5a functions in drought stress tolerance by regulating nitric oxide accumulation in Arabidopsis. Plant, Cell Environ 40:543–552. https://doi.org/10.1111/pce.12723
doi: 10.1111/pce.12723 pubmed: 26825291
Ma G, Shen J, Yu H et al (2022) Genome-wide identification and functional analyses of heat shock transcription factors involved in heat and drought stresses in ryegrass. Environ Exp Bot 201:104968. https://doi.org/10.1016/j.envexpbot.2022.104968
doi: 10.1016/j.envexpbot.2022.104968
Malosetti M, Ribaut J-M, Van Eeuwijk FA (2013) The statistical analysis of multi-environment data: modeling genotype-by-environment interaction and its genetic basis. Front Physiol 4:44. https://doi.org/10.3389/fphys.2013.00044
doi: 10.3389/fphys.2013.00044 pubmed: 23487515 pmcid: 3594989
Margarido GRA, Pastina MM, Souza AP, Garcia AAF (2015) Multi-trait multi-environment quantitative trait loci mapping for a sugarcane commercial cross provides insights on the inheritance of important traits. Mol Breed 35:175. https://doi.org/10.1007/s11032-015-0366-6
doi: 10.1007/s11032-015-0366-6 pubmed: 26273212
Menezes CB, Saldanha DC, Santos CV et al (2015) Evaluation of grain yield in sorghum hybrids under water stress. Genet Mol Res 14:12675–12683. https://doi.org/10.4238/2015.October.19.11
doi: 10.4238/2015.October.19.11 pubmed: 26505418
Menezes CBD, Silva KJD, Teodoro LPR et al (2022) Grain sorghum hybrids under drought stress and full-irrigation conditions in the Brazilian Semiarid. J Agron Crop Sci 208:868–875. https://doi.org/10.1111/jac.12539
doi: 10.1111/jac.12539
Mishra D, Shekhar S, Singh D et al (2018) Heat shock proteins and abiotic stress tolerance in plants. In: Asea AAA, Kaur P (eds) Regulation of heat shock protein responses. Springer International Publishing, Cham, pp 41–69
doi: 10.1007/978-3-319-74715-6_3
Möhring J, Piepho H-P (2009) Comparison of weighting in two-stage analysis of plant breeding trials. Crop Sci 49:1977–1988. https://doi.org/10.2135/cropsci2009.02.0083
doi: 10.2135/cropsci2009.02.0083
Nagaraja Reddy R, Madhusudhana R, Murali Mohan S et al (2013) Mapping QTL for grain yield and other agronomic traits in post-rainy sorghum [Sorghum bicolor (L.) Moench]. Theor Appl Genet 126:1921–1939. https://doi.org/10.1007/s00122-013-2107-8
doi: 10.1007/s00122-013-2107-8 pubmed: 23649648
Ndlovu E, Van Staden J, Maphosa M (2021) Morpho-physiological effects of moisture, heat and combined stresses on Sorghum bicolor [Moench (L.)] and its acclimation mechanisms. Plant Stress 2:100018. https://doi.org/10.1016/j.stress.2021.100018
doi: 10.1016/j.stress.2021.100018
Nogrady B (2023) Record-breaking heat set to hit Southern Hemisphere as summer begins. Nature 623:896–897. https://doi.org/10.1038/d41586-023-03547-9
doi: 10.1038/d41586-023-03547-9 pubmed: 37981645
Ortiz R, Crossa J, Vargas M, Izquierdo J (2007) Studying the effect of environmental variables on the genotype × environment interaction of tomato. Euphytica 153:119–134. https://doi.org/10.1007/s10681-006-9248-7
doi: 10.1007/s10681-006-9248-7
Pearson K (1896) VII. Mathematical contributions to the theory of evolution.—III. Regression, heredity, and panmixia. Philos Trans R Soc Lond Series a, Containing Papers of a Mathematical or Physical Character 187:253–318
Piepho H-P (1997) Analyzing genotype-environment data by mixed models with multiplicative terms. Biometrics, 53(2):761–766. https://doi.org/10.2307/2533976
Piepho H-P (1998) Empirical best linear unbiased prediction in cultivar trials using factor-analytic variance-covariance structures. Theor Appl Genet 97(1):195–201. https://doi.org/10.1007/s001220050885
doi: 10.1007/s001220050885
Pradhan A, Aher L, Hegde V et al (2022) Cooler canopy leverages sorghum adaptation to drought and heat stress. Sci Rep 12:4603. https://doi.org/10.1038/s41598-022-08590-6
doi: 10.1038/s41598-022-08590-6 pubmed: 35301396 pmcid: 8931000
Prasad PVV, Pisipati SR, Mutava RN, Tuinstra MR (2008) Sensitivity of grain sorghum to high temperature stress during reproductive development. Crop Sci 48:1911–1917. https://doi.org/10.2135/cropsci2008.01.0036
doi: 10.2135/cropsci2008.01.0036
Prasad VBR, Govindaraj M, Djanaguiraman M et al (2021) Drought and high temperature stress in sorghum: physiological, genetic, and molecular insights and breeding approaches. IJMS 22:9826. https://doi.org/10.3390/ijms22189826
doi: 10.3390/ijms22189826 pubmed: 34575989 pmcid: 8472353
Prasch CM, Sonnewald U (2015) Signaling events in plants: stress factors in combination change the picture. Environ Exp Bot 114:4–14. https://doi.org/10.1016/j.envexpbot.2014.06.020
doi: 10.1016/j.envexpbot.2014.06.020
Presterl T, Seitz G, Landbeck M et al (2003) Improving nitrogen-use efficiency in european maize: estimation of quantitative genetic parameters. Crop Sci 43:1259–1265. https://doi.org/10.2135/cropsci2003.1259
doi: 10.2135/cropsci2003.1259
Quinby JR (1967) The maturity genes of sorghum. In: Advances in agronomy. Elsevier, pp 267–305
Quinby JR, Karper RE (1954) Inheritance of height in sorghum
doi: 10.2134/agronj1954.00021962004600050007x
R Core Team (2021) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria
Rakshit S, Swapna M, Dalal M et al (2016) Post-flowering drought stress response of post-rainy sorghum genotypes. Ind J Plant Physiol 21:8–14. https://doi.org/10.1007/s40502-015-0187-y
doi: 10.1007/s40502-015-0187-y
Ramburan S, Zhou M, Labuschagne M (2011) Interpretation of genotype\times environment interactions of sugarcane: identifying significant environmental factors. Field Crop Res 124:392–399
doi: 10.1016/j.fcr.2011.07.008
Rezaei EE, Webber H, Asseng S et al (2023) Climate change impacts on crop yields. Nat Rev Earth Environ 4:831–846. https://doi.org/10.1038/s43017-023-00491-0
doi: 10.1038/s43017-023-00491-0
Rooney WL, Aydin S (1999) Genetic control of a photoperiod-sensitive response in Sorghum bicolor (L.) Moench. Crop Sci 39:397–400. https://doi.org/10.2135/cropsci1999.0011183X0039000200016x
doi: 10.2135/cropsci1999.0011183X0039000200016x
Roychoudhury A, Nayek S (2014) Structural aspects and functional regulation of late embryogenesis abundant (LEA) genes and proteins conferring abiotic stress tolerance in plants. In: Ferro AJ (ed) Abiotic stress: role in sustainable agriculture, detrimental effects and management strategies, Nova Science Inc, New York, pp 43–109
Sabadin PK, Malosetti M, Boer MP et al (2012) Studying the genetic basis of drought tolerance in sorghum by managed stress trials and adjustments for phenological and plant height differences. Theor Appl Genet 124:1389–1402. https://doi.org/10.1007/s00122-012-1795-9
doi: 10.1007/s00122-012-1795-9 pubmed: 22297563
Sanjari S, Shobbar Z-S, Ghanati F et al (2021) Molecular, chemical, and physiological analyses of sorghum leaf wax under post-flowering drought stress. Plant Physiol Biochem 159:383–391. https://doi.org/10.1016/j.plaphy.2021.01.001
doi: 10.1016/j.plaphy.2021.01.001 pubmed: 33450508
Sato Y, Yokoya S (2008) Enhanced tolerance to drought stress in transgenic rice plants overexpressing a small heat-shock protein, sHSP17.7. Plant Cell Rep 27:329–334. https://doi.org/10.1007/s00299-007-0470-0
doi: 10.1007/s00299-007-0470-0 pubmed: 17968552
Schwarz G (1978) Estimating the dimension of a model. The annals of statistics 6(2):461–464
Singh V, Nguyen CT, Van Oosterom EJ et al (2015) Sorghum genotypes differ in high temperature responses for seed set. Field Crop Res 171:32–40. https://doi.org/10.1016/j.fcr.2014.11.003
doi: 10.1016/j.fcr.2014.11.003
Smith A, Cullis B, Gilmour A (2001) Applications: the analysis of crop variety evaluation data in Australia. Aust N Z J Stat 43:129–145. https://doi.org/10.1111/1467-842X.00163
doi: 10.1111/1467-842X.00163
Subudhi PK, Rosenow DT, Nguyen HT (2000) Quantitative trait loci for the stay green trait in sorghum (Sorghum bicolor L. Moench): consistency across genetic backgrounds and environments. Theor Appl Genet 101:733–741. https://doi.org/10.1007/s001220051538
doi: 10.1007/s001220051538
Sukumaran S, Lopes M, Dreisigacker S, Reynolds M (2018) Genetic analysis of multi-environmental spring wheat trials identifies genomic regions for locus-specific trade-offs for grain weight and grain number. Theor Appl Genet 131:985–998. https://doi.org/10.1007/s00122-017-3037-7
doi: 10.1007/s00122-017-3037-7 pubmed: 29218375
Tack J, Lingenfelser J, Jagadish SVK (2017) Disaggregating sorghum yield reductions under warming scenarios exposes narrow genetic diversity in US breeding programs. Proc Natl Acad Sci USA 114:9296–9301. https://doi.org/10.1073/pnas.1706383114
doi: 10.1073/pnas.1706383114 pubmed: 28808013 pmcid: 5584438
VanRaden PM (2008) Efficient methods to compute genomic predictions. J Dairy Sci 91:4414–4423
doi: 10.3168/jds.2007-0980 pubmed: 18946147
Wald A (1943) Tests of statistical hypotheses concerning several parameters when the number of observations is large. Trans Am Math Soc 54:426–482
doi: 10.1090/S0002-9947-1943-0012401-3
Weltzien E, Rattunde H, Clerget B, et al (2006) Sorghum diversity and adaptation to drought in West Africa. Enhancing the use of crop genetic diversity to manage abiotic stress in agricultural production systems Rome: International Plant Genetic Resources Institute, pp 31–38
Wheeler T, von Braun J (2013) Climate change impacts on global food security. Science 341(6145):508–513. https://doi.org/10.1126/science.1239402
doi: 10.1126/science.1239402 pubmed: 23908229
Yan W, Hunt LA, Sheng Q, Szlavnics Z (2000) Cultivar evaluation and mega-environment investigation based on the GGE Biplot. Crop Sci 40:597–605. https://doi.org/10.2135/cropsci2000.403597x
doi: 10.2135/cropsci2000.403597x
Yan W, Kang MS, Ma B et al (2007) GGE biplot vs. AMMI analysis of genotype-by-environment data. Crop Sci 47:643–653
doi: 10.2135/cropsci2006.06.0374
Zhang Y, Xu J, Li R et al (2023) Plants’ response to abiotic stress: mechanisms and strategies. IJMS 24:10915. https://doi.org/10.3390/ijms241310915
doi: 10.3390/ijms241310915 pubmed: 37446089 pmcid: 10341657

Auteurs

Karine da Costa Bernardino (KDC)

Embrapa Maize and Sorghum, Rodovia MG 424, Km 65, Sete Lagoas, MG, 35701-970, Brazil.

José Henrique Soler Guilhen (JHS)

Embrapa Maize and Sorghum, Rodovia MG 424, Km 65, Sete Lagoas, MG, 35701-970, Brazil.
JP Agrícola Consultoria, Paragominas, PA, 68625-130, Brazil.

Cícero Beserra de Menezes (CB)

Embrapa Maize and Sorghum, Rodovia MG 424, Km 65, Sete Lagoas, MG, 35701-970, Brazil.

Flavio Dessaune Tardin (FD)

Embrapa Maize and Sorghum, Rodovia MG 424, Km 65, Sete Lagoas, MG, 35701-970, Brazil.

Robert Eugene Schaffert (RE)

Embrapa Maize and Sorghum, Rodovia MG 424, Km 65, Sete Lagoas, MG, 35701-970, Brazil.

Edson Alves Bastos (EA)

Embrapa Mid-North, Av. Duque de Caxias, nº 5.650, Teresina, PI, 64008-780, Brazil.

Milton José Cardoso (MJ)

Embrapa Mid-North, Av. Duque de Caxias, nº 5.650, Teresina, PI, 64008-780, Brazil.

Rodrigo Gazaffi (R)

Luiz de Queiroz College of Agriculture (ESALQ), University of São Paulo (USP), Piracicaba, SP, 13418-900, Brazil.
Federal University of São Carlos (UFSCar), Rodovia Anhanguera, Km 174, Araras, SP, 13604-367, Brazil.

João Ricardo Bachega Feijó Rosa (JRBF)

Luiz de Queiroz College of Agriculture (ESALQ), University of São Paulo (USP), Piracicaba, SP, 13418-900, Brazil.
RB Genetics & Statistics Consulting (RBGSC), Jaú, SP, CEP, 17210-610, Brazil.

Antônio Augusto Franco Garcia (AAF)

Luiz de Queiroz College of Agriculture (ESALQ), University of São Paulo (USP), Piracicaba, SP, 13418-900, Brazil.

Claudia Teixeira Guimarães (CT)

Embrapa Maize and Sorghum, Rodovia MG 424, Km 65, Sete Lagoas, MG, 35701-970, Brazil.

Leon Kochian (L)

Global Institute for Food Security, University of Saskatchewan, Saskatoon, SK, S7N 4J8, Canada.

Maria Marta Pastina (MM)

Embrapa Maize and Sorghum, Rodovia MG 424, Km 65, Sete Lagoas, MG, 35701-970, Brazil. marta.pastina@embrapa.br.

Jurandir Vieira Magalhaes (JV)

Embrapa Maize and Sorghum, Rodovia MG 424, Km 65, Sete Lagoas, MG, 35701-970, Brazil. jurandir.magalhaes@embrapa.br.

Articles similaires

Drought Resistance Gene Expression Profiling Gene Expression Regulation, Plant Gossypium Multigene Family
Humans Macular Degeneration Mendelian Randomization Analysis Life Style Genome-Wide Association Study

Perceptions of the neighbourhood food environment and food insecurity of families with children during the Covid-19 pandemic.

Irene Carolina Sousa Justiniano, Matheus Santos Cordeiro, Hillary Nascimento Coletro et al.
1.00
Humans COVID-19 Food Insecurity Cross-Sectional Studies Female
Humans COVID-19 Brazil Resilience, Psychological Cross-Sectional Studies

Classifications MeSH