Hop2-Mnd1 functions as a DNA sequence fidelity switch in Dmc1-mediated DNA recombination.


Journal

Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555

Informations de publication

Date de publication:
27 Oct 2024
Historique:
received: 22 05 2024
accepted: 17 10 2024
medline: 28 10 2024
pubmed: 28 10 2024
entrez: 28 10 2024
Statut: epublish

Résumé

Homologous recombination during meiosis is critical for chromosome segregation and also gives rise to genetic diversity. Genetic exchange between homologous chromosomes during meiosis is mediated by the recombinase Dmc1, which is capable of recombining DNA sequences with mismatches. The Hop2-Mnd1 complex mediates Dmc1 activity. Here, we reveal a regulatory role for Hop2-Mnd1 in restricting substrate selection. Specifically, Hop2-Mnd1 upregulates Dmc1 activity with DNA substrates that are either fully homologous or contain DNA mismatches, and it also acts against DNA strand exchange between substrates solely harboring microhomology. By isolating and examining salient Hop2-Mnd1 separation-of-function variants, we show that suppressing illegitimate DNA recombination requires the Dmc1 filament interaction attributable to Hop2-Mnd1 but not its DNA binding activity. Our study provides mechanistic insights into how Hop2-Mnd1 helps maintain meiotic recombination fidelity.

Identifiants

pubmed: 39463417
doi: 10.1038/s41467-024-53641-3
pii: 10.1038/s41467-024-53641-3
doi:

Substances chimiques

Cell Cycle Proteins 0
DNA-Binding Proteins 0
Saccharomyces cerevisiae Proteins 0
DMC1 protein, S cerevisiae 0
HOP2 protein, S cerevisiae 0
MND1 protein, S cerevisiae 0
DNA, Fungal 0
Chromosomal Proteins, Non-Histone 0

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

9266

Informations de copyright

© 2024. The Author(s).

Références

Hunter, N. Meiotic recombination: the essence of heredity. Cold Spring Harb. Perspect. Biol. 7, a016618 (2015).
pubmed: 26511629 pmcid: 4665078 doi: 10.1101/cshperspect.a016618
Brown, M. S. & Bishop, D. K. DNA strand exchange and RecA homologs in meiosis. Cold Spring Harb. Perspect. Biol. 7, a016659 (2014).
pubmed: 25475089 doi: 10.1101/cshperspect.a016659
Zickler, D. & Kleckner, N. Recombination, pairing, and synapsis of homologs during meiosis. Cold Spring Harb. Perspect. Biol. 7, a016626 (2015).
pubmed: 25986558 pmcid: 4448610 doi: 10.1101/cshperspect.a016626
Keeney, S., Giroux, C. N. & Kleckner, N. Meiosis-specific DNA double-strand breaks are catalyzed by Spo11, a member of a widely conserved protein family. Cell 88, 375–384 (1997).
pubmed: 9039264 doi: 10.1016/S0092-8674(00)81876-0
Keeney, S. Mechanism and control of meiotic recombination initiation. Curr. Top. Dev. Biol. 52, 1–53 (2001).
pubmed: 11529427 doi: 10.1016/S0070-2153(01)52008-6
Neale, M. J., Pan, J. & Keeney, S. Endonucleolytic processing of covalent protein-linked DNA double-strand breaks. Nature 436, 1053–1057 (2005).
pubmed: 16107854 pmcid: 1262668 doi: 10.1038/nature03872
Garcia, V., Phelps, S. E. L., Gray, S. & Neale, M. J. Bidirectional resection of DNA double-strand breaks by Mre11 and Exo1. Nature 479, 241–244 (2011).
pubmed: 22002605 pmcid: 3214165 doi: 10.1038/nature10515
Crickard, J. B. & Greene, E. C. Biochemical attributes of mitotic and meiotic presynaptic complexes. DNA Repair (Amst.) 71, 148–157 (2018).
pubmed: 30195641 doi: 10.1016/j.dnarep.2018.08.018
San Filippo, J., Sung, P. & Klein, H. Mechanism of eukaryotic homologous recombination. Annu. Rev. Biochem. 77, 229–257 (2008).
pubmed: 18275380 doi: 10.1146/annurev.biochem.77.061306.125255
Bishop, D. K., Park, D., Xu, L. & Kleckner, N. DMC1: a meiosis-specific yeast homolog of E. coli recA required for recombination, synaptonemal complex formation, and cell cycle progression. Cell 69, 439–456 (1992).
pubmed: 1581960 doi: 10.1016/0092-8674(92)90446-J
Cloud, V., Chan, Y.-L., Grubb, J., Budke, B. & Bishop, D. K. Rad51 is an accessory factor for Dmc1-mediated joint molecule formation during meiosis. Science 337, 1222–1225 (2012).
pubmed: 22955832 pmcid: 4056682 doi: 10.1126/science.1219379
Callender, T. L. et al. Mek1 down regulates Rad51 activity during yeast meiosis by phosphorylation of Hed1. PLoS Genet. 12, e1006226 (2016).
pubmed: 27483004 pmcid: 4970670 doi: 10.1371/journal.pgen.1006226
Lee, J. Y. et al. Base triplet stepping by the Rad51/RecA family of recombinases. Science 349, 977–981 (2015).
pubmed: 26315438 pmcid: 4580133 doi: 10.1126/science.aab2666
Borgogno, M. V. et al. Tolerance of DNA mismatches in Dmc1 recombinase-mediated DNA strand exchange. J. Biol. Chem. 291, 4928–4938 (2016).
pubmed: 26709229 doi: 10.1074/jbc.M115.704718
Lee, J. Y. et al. Sequence imperfections and base triplet recognition by the Rad51/RecA family of recombinases. J. Biol. Chem. 292, 11125–11135 (2017).
pubmed: 28476890 pmcid: 5491793 doi: 10.1074/jbc.M117.787614
Steinfeld, J. B. et al. Defining the influence of Rad51 and Dmc1 lineage-specific amino acids on genetic recombination. Genes Dev. 33, 1191–1207 (2019).
pubmed: 31371435 pmcid: 6719624 doi: 10.1101/gad.328062.119
Li, W.-C. et al. Trichoderma reesei Rad51 tolerates mismatches in hybrid meiosis with diverse genome sequences. Proc. Natl Acad. Sci. USA 118, e2007192118 (2021).
pubmed: 33593897 pmcid: 7923544 doi: 10.1073/pnas.2007192118
Luo, S. C. et al. Identification of fidelity-governing factors in human recombinases DMC1 and RAD51 from cryo-EM structures. Nat. Commun. 12, 115 (2021).
pubmed: 33446654 pmcid: 7809202 doi: 10.1038/s41467-020-20258-1
Xu, J. et al. Mechanisms of distinctive mismatch tolerance between Rad51 and Dmc1 in homologous recombination. Nucleic Acids Res. 49, 13135–13149 (2021).
pubmed: 34871438 pmcid: 8682777 doi: 10.1093/nar/gkab1141
Leu, J.-Y., Chua, P. R. & Roeder, G. S. The meiosis-specific Hop2 protein of S. cerevisiae ensures synapsis between homologous chromosomes. Cell 94, 375–386 (1998).
pubmed: 9708739 doi: 10.1016/S0092-8674(00)81480-4
Petukhova, G. V., Romanienko, P. J. & Camerini-Otero, R. D. The Hop2 protein has a direct role in promoting interhomolog interactions during mouse meiosis. Dev. Cell 5, 927–936 (2003).
pubmed: 14667414 doi: 10.1016/S1534-5807(03)00369-1
Pezza, R. J., Voloshin, O. N., Vanevski, F. & Camerini-Otero, R. D. Hop2/Mnd1 acts on two critical steps in Dmc1-promoted homologous pairing. Genes Dev. 21, 1758–1766 (2007).
pubmed: 17639081 pmcid: 1920170 doi: 10.1101/gad.1562907
Lee, W., Iwasaki, H., Tsubouchi, H. & Li, H. W. Hop2-Mnd1 and Swi5-Sfr1 stimulate Dmc1 filament assembly using distinct mechanisms. Nucleic Acids Res. 51, 8550–8562 (2023).
pubmed: 37395447 pmcid: 10484676 doi: 10.1093/nar/gkad561
Pezza, R. J., Petukhova, G. V., Ghirlando, R. & Camerini-Otero, R. D. Molecular activities of meiosis-specific proteins Hop2, Mnd1, and the Hop2-Mnd1 complex. J. Biol. Chem. 281, 18426–18434 (2006).
pubmed: 16675459 doi: 10.1074/jbc.M601073200
Petukhova, G. V. et al. The Hop2 and Mnd1 proteins act in concert with Rad51 and Dmc1 in meiotic recombination. Nat. Struct. Mol. Biol. 12, 449–453 (2005).
pubmed: 15834424 doi: 10.1038/nsmb923
Enomoto, R. et al. Stimulation of DNA strand exchange by the human TBPIP/Hop2-Mnd1 complex. J. Biol. Chem. 281, 5575–5581 (2006).
pubmed: 16407260 doi: 10.1074/jbc.M506506200
Chi, P., San Filippo, J., Sehorn, M. G., Petukhova, G. V. & Sung, P. Bipartite stimulatory action of the Hop2–Mnd1 complex on the Rad51 recombinase. Genes Dev. 21, 1747–1757 (2007).
pubmed: 17639080 pmcid: 1920169 doi: 10.1101/gad.1563007
Ploquin, M. et al. Stimulation of fission yeast and mouse Hop2-Mnd1 of the Dmc1 and Rad51 recombinases. Nucleic Acids Res. 35, 2719–2733 (2007).
pubmed: 17426123 pmcid: 1885673 doi: 10.1093/nar/gkm174
Chen, Y.-K. et al. Heterodimeric complexes of Hop2 and Mnd1 function with Dmc1 to promote meiotic homolog juxtaposition and strand assimilation. Proc. Natl Acad. Sci. USA 101, 10572–10577 (2004).
pubmed: 15249670 pmcid: 490024 doi: 10.1073/pnas.0404195101
Tsubouchi, H. The Hop2-Mnd1 complex and its regulation of homologous recombination. Biomolecules 13, 662 (2023).
pubmed: 37189409 pmcid: 10136221 doi: 10.3390/biom13040662
Zhao, W. & Sung, P. Significance of ligand interactions involving Hop2-Mnd1 and the RAD51 and DMC1 recombinases in homologous DNA repair and XX ovarian dysgenesis. Nucleic Acids Res. 43, 4055–4066 (2015).
pubmed: 25820426 pmcid: 4417169 doi: 10.1093/nar/gkv259
Zhao, W. et al. Mechanistic insights into the role of Hop2–Mnd1 in meiotic homologous DNA pairing. Nucleic Acids Res. 42, 906–917 (2014).
pubmed: 24150939 doi: 10.1093/nar/gkt924
Tsubouchi, H. & Roeder, G. S. The importance of genetic recombination for fidelity of chromosome pairing in meiosis. Dev. Cell 5, 915–925 (2003).
pubmed: 14667413 doi: 10.1016/S1534-5807(03)00357-5
Henry, J. M. et al. Mnd1/Hop2 facilitates Dmc1-dependent interhomolog crossover formation in meiosis of budding yeast. Mol. Cell Biol. 26, 2913–2923 (2006).
pubmed: 16581767 pmcid: 1446936 doi: 10.1128/MCB.26.8.2913-2923.2006
Farahani-Tafreshi, Y. et al. The Arabidopsis HOP2 gene has a role in preventing illegitimate connections between nonhomologous chromosome regions. Chromosome Res. 30, 59–75 (2022).
pubmed: 35064347 doi: 10.1007/s10577-021-09681-2
Ito, K., Argunhan, B., Tsubouchi, H. & Iwasaki, H. Real-time observation of the DNA strand exchange reaction mediated by Rad51. J. Vis. Exp., e59073 (2019).
Qi, Z. et al. DNA sequence alignment by microhomology sampling during homologous recombination. Cell 160, 856–869 (2015).
pubmed: 25684365 pmcid: 4344887 doi: 10.1016/j.cell.2015.01.029
Greene, E. C. DNA sequence alignment during homologous recombination. J. Biol. Chem. 291, 11572–11580 (2016).
pubmed: 27129270 pmcid: 4882428 doi: 10.1074/jbc.R116.724807
Lee, M.-H. et al. Calcium ion promotes yeast dmc1 activity via formation of long and fine helical filaments with single-stranded DNA. J. Biol. Chem. 280, 40980–40984 (2005).
pubmed: 16204247 doi: 10.1074/jbc.M505896200
Busygina, V. et al. Functional attributes of the Saccharomyces cerevisiae meiotic recombinase Dmc1. DNA Repair (Amst.) 12, 707–712 (2013).
pubmed: 23769192 doi: 10.1016/j.dnarep.2013.05.004
Nimonkar, A. V. et al. Saccharomyces cerevisiae Dmc1 and Rad51 proteins preferentially function with Tid1 and Rad54 proteins, respectively, to promote DNA strand invasion during genetic recombination. J. Biol. Chem. 287, 28727–28737 (2012).
pubmed: 22761450 pmcid: 3436576 doi: 10.1074/jbc.M112.373290
Bugreev, D. V., Golub, E. I., Stasiak, A. Z., Stasiak, A. & Mazin, A. V. Activation of human meiosis-specific recombinase Dmc1 by Ca2+. J. Biol. Chem. 280, 26886–26895 (2005).
pubmed: 15917244 doi: 10.1074/jbc.M502248200
Altmannova, V. et al. The role of bivalent ions in the regulation of D-loop extension mediated by DMC1 during meiotic recombination. iScience 25, https://doi.org/10.1016/j.isci.2022.105439 (2022).
Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021).
pubmed: 34265844 pmcid: 8371605 doi: 10.1038/s41586-021-03819-2
Kang, H.-A. et al. Crystal structure of Hop2–Mnd1 and mechanistic insights into its role in meiotic recombination. Nucleic Acids Res. 43, 3841–3856 (2015).
pubmed: 25740648 pmcid: 4402518 doi: 10.1093/nar/gkv172
Yan, Y., Tao, H., He, J. & Huang, S.-Y. The HDOCK server for integrated protein-protein docking. Nat. Protoc. 15, 1829–1852 (2020).
pubmed: 32269383 doi: 10.1038/s41596-020-0312-x
Sung, P. & Klein, H. Mechanism of homologous recombination: mediators and helicases take on regulatory functions. Nat. Rev. Mol. Cell Biol. 7, 739–750 (2006).
pubmed: 16926856 doi: 10.1038/nrm2008
Tsubouchi, H., Argunhan, B., Ito, K., Takahashi, M. & Iwasaki, H. Two auxiliary factors promote Dmc1-driven DNA strand exchange via stepwise mechanisms. Proc. Natl Acad. Sci. USA 117, 12062–12070 (2020).
pubmed: 32414915 pmcid: 7275708 doi: 10.1073/pnas.1917419117
Tsubouchi, H. & Roeder, G. S. The Mnd1 protein forms a complex with hop2 to promote homologous chromosome pairing and meiotic double-strand break repair. Mol. Cell Biol. 22, 3078–3088 (2002).
pubmed: 11940665 pmcid: 133769 doi: 10.1128/MCB.22.9.3078-3088.2002
Uanschou, C. et al. Sufficient amounts of functional HOP2/MND1 complex promote interhomolog DNA repair but are dispensable for intersister DNA repair during meiosis in Arabidopsis. Plant Cell 25, 4924–4940 (2013).
pubmed: 24363313 pmcid: 3903996 doi: 10.1105/tpc.113.118521
Bugreev, D. V. et al. HOP2-MND1 modulates RAD51 binding to nucleotides and DNA. Nat. Commun. 5, 4198 (2014).
pubmed: 24943459 doi: 10.1038/ncomms5198
Shinohara, M. & Shinohara, A. Multiple pathways suppress non-allelic homologous recombination during meiosis in Saccharomyces cerevisiae. PLoS One 8, e63144 (2013).
pubmed: 23646187 pmcid: 3639938 doi: 10.1371/journal.pone.0063144
Chan, Y.-L., Brown, M. S., Qin, D., Handa, N. & Bishop, D. K. The third exon of the budding yeast meiotic recombination gene HOP2 is required for calcium-dependent and recombinase Dmc1-specific stimulation of homologous strand assimilation. J. Biol. Chem. 289, 18076–18086 (2014).
pubmed: 24798326 pmcid: 4140259 doi: 10.1074/jbc.M114.558601
Lee, C. D. et al. An improved SUMO fusion protein system for effective production of native proteins. Protein Sci. 17, 1241–1248 (2008).
pubmed: 18467498 pmcid: 2442006 doi: 10.1110/ps.035188.108
Hong, E. L., Shinohara, A. & Bishop, D. K. Saccharomyces cerevisiae Dmc1 protein promotes renaturation of single-strand DNA (ssDNA) and assimilation of ssDNA into homologous super-coiled duplex DNA. J. Biol. Chem. 276, 41906–41912 (2001).
pubmed: 11551925 doi: 10.1074/jbc.M105563200
Hayase, A. et al. A protein complex containing Mei5 and Sae3 promotes the assembly of the meiosis-specific RecA homolog Dmc1. Cell 119, 927–940 (2004).
pubmed: 15620352 doi: 10.1016/j.cell.2004.10.031
Raschle, M., Van Komen, S., Chi, P., Ellenberger, T. & Sung, P. Multiple interactions with the Rad51 recombinase govern the homologous recombination function of Rad54. J. Biol. Chem. 279, 51973–51980 (2004).
pubmed: 15465810 doi: 10.1074/jbc.M410101200
Lan, W.-H. et al. Rad51 facilitates filament assembly of meiosis-specific Dmc1 recombinase. Proc. Natl Acad. Sci. USA 117, 11257–11264 (2020).
pubmed: 32404423 pmcid: 7260962 doi: 10.1073/pnas.1920368117
Chi, P. et al. Yeast recombination factor Rdh54 functionally interacts with the Rad51 recombinase and catalyzes Rad51 removal from DNA. J. Biol. Chem. 281, 26268–26279 (2006).
pubmed: 16831867 doi: 10.1074/jbc.M602983200

Auteurs

Jo-Ching Peng (JC)

Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan.

Hao-Yen Chang (HY)

Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan.
Department of Chemistry, National Taiwan University, Taipei, Taiwan.

Yuting Liang Sun (YL)

Department of Chemistry, National Taiwan University, Taipei, Taiwan.

Mara Prentiss (M)

Department of Physics, Harvard University, Cambridge, MA, 02138, USA.

Hung-Wen Li (HW)

Department of Chemistry, National Taiwan University, Taipei, Taiwan.

Peter Chi (P)

Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan. peterhchi@ntu.edu.tw.
Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan. peterhchi@ntu.edu.tw.

Articles similaires

Meiosis Schizosaccharomyces Schizosaccharomyces pombe Proteins Spores, Fungal
Adenosine Triphosphate Adenosine Diphosphate Mitochondrial ADP, ATP Translocases Binding Sites Mitochondria
Humans DNA Methylation Female Male Alcohol Oxidoreductases
Schizosaccharomyces Meiosis Schizosaccharomyces pombe Proteins Mitosis Epigenesis, Genetic

Classifications MeSH