Transcriptomic data reveals an auxiliary detoxification mechanism that alleviates formaldehyde stress in Methylobacterium sp. XJLW.
Methylobacterium
RS27765
glyA
Metabolic bypass
Methyltransferase
Novel methylotrophy gene
Transcriptome
Journal
BMC genomics
ISSN: 1471-2164
Titre abrégé: BMC Genomics
Pays: England
ID NLM: 100965258
Informations de publication
Date de publication:
28 Oct 2024
28 Oct 2024
Historique:
received:
21
05
2024
accepted:
21
10
2024
medline:
29
10
2024
pubmed:
29
10
2024
entrez:
29
10
2024
Statut:
epublish
Résumé
Methylobacterium sp. XJLW converts formaldehyde into methanol and formic acid via a Cannizzaro reaction in response to environmental formaldehyde stress. Methanol is further assimilated without formaldehyde or formic acid formation, whereas formic acid accumulates without undergoing further metabolism. Synthetic biology-based biotransformation of methanol to generate additional products can potentially achieve carbon neutrality. However, practical applications are hampered by limitations such as formaldehyde tolerance. In this study, we aimed to explore the specific mechanism of strain XJLW in response to formaldehyde stress. Thus, a transcriptomic analysis of XJLW under formaldehyde treatment was performed, revealing changes in the expression of specific genes related to one-carbon metabolism. Central metabolic genes were downregulated, whereas metabolic bypass genes were upregulated to maintain methanol assimilation in XJLW's response to formaldehyde treatment. In total, 100 genes potentially related to methyl transfer were identified. The function of only one gene, RS27765, was similar to that of glyA, which encodes a methyltransferase involved in one-carbon metabolism. The double-mutant strain, lacking RS27765 and glyA, lost its ability to grow in methanol, whereas the single-mutant strain, lacking only one of these genes, still grew in methanol. Co-expression of RS27765 and RS31205 (YscQ/HrcQ type III secretion apparatus protein) enabled Escherichia coli BL21 (DE3) to effectively degrade methanol. Using protein sequence analysis and molecular docking, we proposed a model wherein RS27765 is necessary for cell growth by using methanol generated via formaldehyde cannizzaro reaction. This process enables direct assimilation of methanol without producing formaldehyde and formic acid as intermediate metabolites. The RS27765 gene cluster, in conjunction with metabolic bypass genes, constitutes a novel auxiliary pathway facilitating formaldehyde stress tolerance in the strain.
Identifiants
pubmed: 39468441
doi: 10.1186/s12864-024-10923-w
pii: 10.1186/s12864-024-10923-w
doi:
Substances chimiques
Formaldehyde
1HG84L3525
Methanol
Y4S76JWI15
Formates
0
formic acid
0YIW783RG1
Bacterial Proteins
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
1008Subventions
Organisme : National Natural Science Foundation of China
ID : No. 31970104
Organisme : National Natural Science Foundation of China
ID : No. 31970104
Informations de copyright
© 2024. The Author(s).
Références
Fan L, Wang Y, Zheng P, Sun J. Methanol dehydrogenase, a key enzyme of one-carbon metabolism: a review. Sheng Wu Gong Cheng Xue Bao. 2021;37(2):530–40.
pubmed: 33645153
Gan Y, Meng X, Gao C, Song W, Liu L, Chen X. Metabolic engineering strategies for microbial utilization of methanol. Eng Microbiol. 2023;3(3):100081.
doi: 10.1016/j.engmic.2023.100081
Zhu T, Zhao T, Bankefa OE, Li Y. Engineering unnatural methylotrophic cell factories for methanol-based biomanufacturing: challenges and opportunities. Biotechnol Adv. 2020;39:107467.
pubmed: 31697995
doi: 10.1016/j.biotechadv.2019.107467
Zhu T, Sun H, Wang M, Li Y. Pichia pastoris as a versatile cell factory for the production of industrial enzymes and chemicals: current status and future perspectives. Biotechnol Adv. 2019;14(6):1800694.
Heggeset TMB, Krog A, Balzer S, Wentzel A, Ellingsen TE, Brautaset T. Genome sequence of thermotolerant Bacillus methanolicus: features and regulation related to methylotrophy and production of L-lysine and L-glutamate from methanol. Appl Environ Microbiol. 2012;78(15):5170–81.
pubmed: 22610424
pmcid: 3416434
doi: 10.1128/AEM.00703-12
Sonntag F, Kroner C, Lubuta P, Peyraud R, Horst A, Buchhaupt M, Schrader J. Engineering Methylobacterium extorquens for de novo synthesis of the sesquiterpenoid α-humulene from methanol. Metab Eng. 2015;32:82–94.
pubmed: 26369439
doi: 10.1016/j.ymben.2015.09.004
Liu Y, Tu X, Xu Q, Bai C, Kong C, Liu Q, Yu J, Peng Q, Zhou X, Zhang Y, et al. Engineered monoculture and co-culture of methylotrophic yeast for de novo production of monacolin J and lovastatin from methanol. Metab Eng. 2018;45:189–99.
pubmed: 29258964
doi: 10.1016/j.ymben.2017.12.009
Cai P, Wu X, Deng J, Gao L, Shen Y, Yao L, Zhou YJ. Methanol biotransformation toward high-level production of fatty acid derivatives by engineering the industrial yeast Pichia pastoris. Proc Natl Acad Sci U S A. 2022;119(29):e2201711119.
pubmed: 35858340
pmcid: 9303929
doi: 10.1073/pnas.2201711119
Kremp F. V Müller 2021 Methanol and methyl group conversion in acetogenic bacteria: biochemistry, physiology and application. FEMS Microbiol Rev 45 2 fuaa040–2.
pubmed: 32901799
doi: 10.1093/femsre/fuaa040
Yu H, Liao JC. A modified serine cycle in Escherichia coli coverts methanol and CO(2) to two-carbon compounds. Nat Commun. 2018;9(1):3992.
pubmed: 30266898
pmcid: 6162302
doi: 10.1038/s41467-018-06496-4
Chistoserdova L, Chen S-W, Lapidus A, Lidstrom ME. Methylotrophy in Methylobacterium extorquens AM1 from a genomic point of view. J Bacteriol. 2003;185(10):2980–7.
pubmed: 12730156
pmcid: 154073
doi: 10.1128/JB.185.10.2980-2987.2003
Yang J, Zhang CT, Yuan XJ, Zhang M, Mo XH, Tan LL, Zhu LP, Chen WJ, Yao MD, Hu B, et al. Metabolic engineering of Methylobacterium extorquens AM1 for the production of butadiene precursor. Microb Cell Fact. 2018;17(1):194.
pubmed: 30572892
pmcid: 6300920
doi: 10.1186/s12934-018-1042-4
Zhang W, Zhang T, Wu S, Wu M, Xin F, Dong W, Ma J, Zhang M, Jiang M. Guidance for engineering of synthetic methylotrophy based on methanol metabolism in methylotrophy. RSC Adv. 2017;7(7):4083–91.
doi: 10.1039/C6RA27038G
Le TK, Lee YJ, Han GH, Yeom SJ. Methanol dehydrogenases as a key biocatalysts for synthetic methylotrophy. Front Bioeng Biotechnol. 2021;9:787791.
pubmed: 35004648
pmcid: 8741260
doi: 10.3389/fbioe.2021.787791
Erb TJ, Berg IA, Brecht V, Müller M, Fuchs G, Alber BE. Synthesis of C
pubmed: 17548827
pmcid: 1965564
doi: 10.1073/pnas.0702791104
Peyraud R, Kiefer P, Christen P, Massou S, Portais J-C, Vorholt JA. Demonstration of the ethylmalonyl-CoA pathway by using
pubmed: 19261854
pmcid: 2660752
doi: 10.1073/pnas.0810932106
Nguyen AD, Park JY, Hwang IY, Hamilton R, Kalyuzhnaya MG, Kim D, Lee EY. Genome-scale evaluation of core one-carbon metabolism in gammaproteobacterial methanotrophs grown on methane and methanol. Metab Eng. 2020;57:1–12.
pubmed: 31626985
doi: 10.1016/j.ymben.2019.10.004
Wang Y, Fan L, Tuyishime P, Zheng P, Sun J. Synthetic methylotrophy: a practical solution for methanol-based biomanufacturing. Trends Biotechnol. 2020;38(6):650–66.
pubmed: 31932066
doi: 10.1016/j.tibtech.2019.12.013
Tuyishime P, Wang Y, Fan L, Zhang Q, Li Q, Zheng P, Sun J, Ma Y. Engineering Corynebacterium glutamicum for methanol-dependent growth and glutamate production. Metab Eng. 2018;49:220–31.
pubmed: 30048680
doi: 10.1016/j.ymben.2018.07.011
Shao Y, Li J, Wang Y, Yi F, Zhang Y, Cui P, Zhong W. Comparative genomics and transcriptomics insights into the C1 metabolic model of a formaldehyde-degrading strain Methylobacterium sp. XJLW. Mol Omics. 2019;15(2):138–49.
pubmed: 30785446
doi: 10.1039/C8MO00198G
Ochsner AM, Christen M, Hemmerle L, Peyraud R, Christen B, Vorholt JA. Transposon sequencing uncovers an essential Regulatory function of Phosphoribulokinase for Methylotrophy. Curr Biol. 2017;27(17):2579–e25882576.
pubmed: 28823675
doi: 10.1016/j.cub.2017.07.025
Blaschke L, Wagner W, Werkmeister C, Wild M, Gihring A, Rupp S, Zibek S. Development of a simplified purification method for a novel formaldehyde dismutase variant from Pseudomonas putida J3. J Biotechnol. 2017;241:69–75.
pubmed: 27836796
doi: 10.1016/j.jbiotec.2016.11.007
Kato N, Yamagami T, Shimao M, Sakazawa C. Formaldehyde dismutase, a novel NAD-binding oxidoreductase from Pseudomonas putida F61. Eur J Biochem. 1986;156(1):59–64.
pubmed: 3514215
doi: 10.1111/j.1432-1033.1986.tb09548.x
Adroer N, Casas C, De Mas C, Solà C. Mechanism of formaldehyde biodegradation by Pseudomonas putida. Appl Microbiol Biotechnol. 1990;33:217–20.
pubmed: 1366532
doi: 10.1007/BF00176528
Yonemitsu H, Shiozaki E, Hitotsuda F, Kishimoto N, Okuno Y, Nakagawa K, Hori K. Biodegradation of high concentrations of formaldehyde by lyophilized cells of Methylobacterium sp. FD1. Biosci Biotechnol Biochem. 2016;80(11):2264–70.
pubmed: 27460410
doi: 10.1080/09168451.2016.1214535
Bornaes C, Petersen J, Holmberg S. Serine and threonine catabolism in Saccharomyces cerevisiae: the CHA1 polypeptide is homologous with other serine and threonine dehydratases. Genetics. 1992;131(3):531–9.
pubmed: 1628804
pmcid: 1205027
doi: 10.1093/genetics/131.3.531
Tronconi MA, Fahnenstich H, Gerrard Weehler MC, Andreo CS, Flugge U-I, Drincovich MF, Maurino VG. Arabidopsis NAD-malic enzyme functions as a homodimer and heterodimer and has a major impact on nocturnal metabolism. Plant Physiol. 2008;146(4):1540–52.
pubmed: 18223148
pmcid: 2287332
doi: 10.1104/pp.107.114975
Mullins EA, Francois JA, Kappock TJ. A specialized citric acid cycle requiring succinyl-coenzyme A (CoA):acetate CoA-transferase (AarC) confers acetic acid resistance on the acidophile Acetobacter aceti. J Bacteriol. 2008;190(14):4933–40.
pubmed: 18502856
pmcid: 2447011
doi: 10.1128/JB.00405-08
Narayanan BC, Niu W, Han Y, Zou J, Mariano PS, Dunaway-Mariano D, Herzberg O. Structure and function of PA4872 from Pseudomonas aeruginosa, a novel class of oxaloacetate decarboxylase from the PEP mutase/isocitrate lyase superfamily. Biochemistry. 2008;47(1):167–82.
pubmed: 18081320
doi: 10.1021/bi701954p
Guccione E, Del Rocio Leon-Kempis M, Pearson BM, Hitchin E, Mulholland F, Van Diemen PM, Stevens MP, Kelly DJ. Amino acid‐dependent growth of Campylobacter jejuni: key roles for aspartase (AspA) under microaerobic and oxygen‐limited conditions and identification of AspB (Cj0762), essential for growth on glutamate. Mol Microbiol. 2008;69(1):77–93.
pubmed: 18433445
doi: 10.1111/j.1365-2958.2008.06263.x
Leyva-Vazquez MA, Setlow P. Cloning and nucleotide sequences of the genes encoding triose phosphate isomerase, phosphoglycerate mutase, and enolase from Bacillus subtilis. J Bacteriol. 1994;176(13):3903–10.
pubmed: 8021172
pmcid: 205587
doi: 10.1128/jb.176.13.3903-3910.1994
Fraser HI, Kvaratskhelia M, White MF. The two analogous phosphoglycerate mutases of Escherichia coli. FEBS Lett. 1999;455(3):344–8.
pubmed: 10437801
doi: 10.1016/S0014-5793(99)00910-2
Zhao G, Winkler ME. A novel alpha-ketoglutarate reductase activity of the sera-encoded 3-phosphoglycerate dehydrogenase of Escherichia coli K-12 and its possible implications for human 2-hydroxyglutaric aciduria. J Bacteriol. 1996;178(1):232–9.
pubmed: 8550422
pmcid: 177644
doi: 10.1128/jb.178.1.232-239.1996
Neuwald AF, Stauffer GV. DNA sequence and characterization of the Escherichia coli serB gene. Nucleic Acids Res. 1985;13(19):7025–39.
pubmed: 2997734
pmcid: 322020
doi: 10.1093/nar/13.19.7025
Sass JO, Fischer K, Wang R, Christensen E, Scholl-Bürgi S, Chang R, Kapelari K, Walter M. D-glyceric aciduria is caused by genetic deficiency of D-glycerate kinase (GLYCTK). Hum Mutat. 2010;31(12):1280–5.
pubmed: 20949620
doi: 10.1002/humu.21375
Diepold A, Kudryashev M, Delalez NJ, Berry RM, Armitage JP. Composition, formation, and regulation of the cytosolic c-ring, a dynamic component of the type III secretion injectisome. PLoS Biol. 2015;13(1):e1002039.
pubmed: 25591178
pmcid: 4295842
doi: 10.1371/journal.pbio.1002039
Lorenz C, Hausner J, Buttner D. HrcQ provides a docking site for early and late type III secretion substrates from Xanthomonas. PLoS ONE. 2012;7(11):e51063.
pubmed: 23226460
pmcid: 3511370
doi: 10.1371/journal.pone.0051063
Wang X, Li Y, Meng F. Transcriptomic response study of brittle star Ophiothrix Exigua to sediment burial. Hydrobiologia. 2023;850(16):3645–54.
doi: 10.1007/s10750-023-05271-x
Jiao L, Dai T, Cao T, Jin M, Sun P, Zhou Q. New insight into the molecular basis of chromium exposure of Litopenaeus vannamei by transcriptome analysis. Mar Pollut Bull. 2020;160:111673.
pubmed: 33181946
doi: 10.1016/j.marpolbul.2020.111673
Zhang H, Zhao R, Huang C, Li J, Shao Y, Xu J, Shu M, Zhong W. Selective and faster nicotine biodegradation by genetically modified Pseudomonas sp. JY-Q in the presence of glucose. Appl Microbiol Biotechnol. 2019;103(1):339–48.
pubmed: 30343429
doi: 10.1007/s00253-018-9445-z
Thomas JG, Ayling A, Baneyx F. Molecular chaperones, folding catalysts, and the recovery of active recombinant proteins from E. Coli. Appl Biochem Biotechnol. 1997;66(3):197–238.
pubmed: 9276922
doi: 10.1007/BF02785589
Zuo Z-Y, Zheng Z-L, Liu Z-G, Yi Q-M, Zou G-L. Cloning, DNA shuffling and expression of serine hydroxymethyltransferase gene from Escherichia coli strain AB90054. Enzyme Microb Technol. 2007;40(4):569–77.
doi: 10.1016/j.enzmictec.2006.05.018
Roy A, Kucukural A, Zhang Y. I-TASSER: a unified platform for automated protein structure and function prediction. Nat Protoc. 2010;5(4):725–38.
pubmed: 20360767
pmcid: 2849174
doi: 10.1038/nprot.2010.5
Yang J, Yan R, Roy A, Xu D, Poisson J, Zhang Y. The I-TASSER suite: protein structure and function prediction. Nat Methods. 2015;12(1):7–8.
pubmed: 25549265
pmcid: 4428668
doi: 10.1038/nmeth.3213
Zhang Y. I-TASSER server for protein 3D structure prediction. BMC Bioinformatics. 2008;9:1–8.
doi: 10.1186/1471-2105-9-40
Schwede T, Kopp J, Guex N, Peitsch MC. SWISS-MODEL: an automated protein homology-modeling server. Nucleic Acids Res. 2003;31(13):3381–5.
pubmed: 12824332
pmcid: 168927
doi: 10.1093/nar/gkg520
Consortium U. UniProt: a hub for protein information. Nucleic Acids Res. 2015;43(D1):D204–12.
doi: 10.1093/nar/gku989
Johnson M, Zaretskaya I, Raytselis Y, Merezhuk Y, McGinnis S, Madden TL. NCBI BLAST: a better web interface. Nucleic Acids Res. 2008;36(suppl2):W5–9.
pubmed: 18440982
pmcid: 2447716
doi: 10.1093/nar/gkn201
Sievers F, Higgins DG. Clustal omega. Curr Protoc Bioinf. 2014;48(1):3. 11-13.13. 16.
doi: 10.1002/0471250953.bi0313s48
Trott O, Olson AJ. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem. 2010;31(2):455–61.
pubmed: 19499576
pmcid: 3041641
doi: 10.1002/jcc.21334
Eberhardt J, Santos-Martins D, Tillack AF, Forli S. AutoDock Vina 1.2. 0: new docking methods, expanded force field, and python bindings. J Chem Inf Model. 2021;61(8):3891–8.
pubmed: 34278794
pmcid: 10683950
doi: 10.1021/acs.jcim.1c00203