Community standards and future opportunities for synthetic communities in plant-microbiota research.
Journal
Nature microbiology
ISSN: 2058-5276
Titre abrégé: Nat Microbiol
Pays: England
ID NLM: 101674869
Informations de publication
Date de publication:
Nov 2024
Nov 2024
Historique:
received:
30
10
2023
accepted:
16
09
2024
medline:
31
10
2024
pubmed:
31
10
2024
entrez:
31
10
2024
Statut:
ppublish
Résumé
Harnessing beneficial microorganisms is seen as a promising approach to enhance sustainable agriculture production. Synthetic communities (SynComs) are increasingly being used to study relevant microbial activities and interactions with the plant host. Yet, the lack of community standards limits the efficiency and progress in this important area of research. To address this gap, we recommend three actions: (1) defining reference SynComs; (2) establishing community standards, protocols and benchmark data for constructing and using SynComs; and (3) creating an infrastructure for sharing strains and data. We also outline opportunities to develop SynCom research through technical advances, linking to field studies, and filling taxonomic blind spots to move towards fully representative SynComs.
Identifiants
pubmed: 39478084
doi: 10.1038/s41564-024-01833-4
pii: 10.1038/s41564-024-01833-4
doi:
Types de publication
Journal Article
Review
Langues
eng
Sous-ensembles de citation
IM
Pagination
2774-2784Subventions
Organisme : Novo Nordisk Fonden (Novo Nordisk Foundation)
ID : NNF19SA0059360
Organisme : Novo Nordisk Fonden (Novo Nordisk Foundation)
ID : NNF19SA0059360
Organisme : Novo Nordisk Fonden (Novo Nordisk Foundation)
ID : NNF19SA0059360
Organisme : Novo Nordisk Fonden (Novo Nordisk Foundation)
ID : NNF19SA0059360
Organisme : Tata Institute of Fundamental Research (TIFR)
ID : TATA Transformation prize in Food Security
Organisme : RCUK | Biotechnology and Biological Sciences Research Council (BBSRC)
ID : BB/X010953/1; BBS/E/RH/230003B
Organisme : Deutsche Forschungsgemeinschaft (German Research Foundation)
ID : DECRyPT, SPP2125
Informations de copyright
© 2024. Springer Nature Limited.
Références
Bulgarelli, D. Structure and function of the bacterial root microbiota in wild and domesticated barley. Cell Host Microbe 17, 392–403 (2015).
pubmed: 25732064
pmcid: 4362959
doi: 10.1016/j.chom.2015.01.011
Turner, T. R., James, E. K. & Poole, P. S. The plant microbiome. Genome Biol. 14, 209 (2013).
pubmed: 23805896
pmcid: 3706808
doi: 10.1186/gb-2013-14-6-209
Geller, A. M. & Levy, A. ‘What I cannot create, I do not understand’: elucidating microbe-microbe interactions to facilitate plant microbiome engineering. Curr. Opin. Microbiol. 72, 102283 (2023).
pubmed: 36868050
doi: 10.1016/j.mib.2023.102283
Vorholt, J. A., Vogel, C., Carlström, C. I. & Müller, D. B. Establishing causality: opportunities of synthetic communities for plant microbiome research. Cell Host Microbe 22, 142–155 (2017).
pubmed: 28799900
doi: 10.1016/j.chom.2017.07.004
Bai, Y. et al. Functional overlap of the Arabidopsis leaf and root microbiota. Nature 528, 364–369 (2015).
pubmed: 26633631
doi: 10.1038/nature16192
Zhang, J. et al. High-throughput cultivation and identification of bacteria from the plant root microbiota. Nat. Protoc. 16, 988–1012 (2021).
pubmed: 33442053
doi: 10.1038/s41596-020-00444-7
Zhang, J. et al. NRT1.1B is associated with root microbiota composition and nitrogen use in field-grown rice. Nat. Biotechnol. 37, 676–684 (2019).
pubmed: 31036930
doi: 10.1038/s41587-019-0104-4
Wippel, K. et al. Host preference and invasiveness of commensal bacteria in the Lotus and Arabidopsis root microbiota. Nat. Microbiol. 6, 1150–1162 (2021).
pubmed: 34312531
pmcid: 8387241
doi: 10.1038/s41564-021-00941-9
Durán, P. et al. Microbial interkingdom interactions in roots promote Arabidopsis survival. Cell 175, 973–983.e14 (2018).
pubmed: 30388454
pmcid: 6218654
doi: 10.1016/j.cell.2018.10.020
Robertson-Albertyn, S. et al. Genome-annotated bacterial collection of the barley rhizosphere microbiota. Microbiol. Resour. Announc. 11, e01064-21 (2022).
pubmed: 35175125
doi: 10.1128/mra.01064-21
Durán, P. et al. Shared features and reciprocal complementation of the Chlamydomonas and Arabidopsis microbiota. Nat. Commun. 13, 406 (2022).
pubmed: 35058457
doi: 10.1038/s41467-022-28055-8
Kremer, J. M. et al. Peat-based gnotobiotic plant growth systems for Arabidopsis microbiome research. Nat. Protoc. 16, 2450–2470 (2021).
pubmed: 33911260
doi: 10.1038/s41596-021-00504-6
Cole, B. J. et al. Genome-wide identification of bacterial plant colonization genes. PLoS Biol. 15, e2002860 (2017).
pubmed: 28938018
doi: 10.1371/journal.pbio.2002860
Wheatley, R. M. et al. Lifestyle adaptations of Rhizobium from rhizosphere to symbiosis. Proc. Natl Acad. Sci. USA 117, 23823–23834 (2020).
pubmed: 32900931
doi: 10.1073/pnas.2009094117
Levy, A. et al. Genomic features of bacterial adaptation to plants. Nat. Genet. 50, 138–150 (2018).
doi: 10.1038/s41588-017-0012-9
Schäfer, M. et al. Metabolic interaction models recapitulate leaf microbiota ecology. Science 381, eadf5121 (2023).
pubmed: 37410834
doi: 10.1126/science.adf5121
Sheth, R. U. et al. Spatial metagenomic characterization of microbial biogeography in the gut. Nat. Biotechnol. 37, 877–883 (2019).
pubmed: 31332325
doi: 10.1038/s41587-019-0183-2
Lötstedt, B. et al. Spatial host–microbiome sequencing reveals niches in the mouse gut. Nat. Biotech. 42, 1394–1403 (2024).
doi: 10.1038/s41587-023-01988-1
Johnston, A. E. & Poulton, P. R. The importance of long‐term experiments in agriculture: their management to ensure continued crop production and soil fertility; the Rothamsted experience. Eur. J. Soil Sci. 69, 113–125 (2018).
pubmed: 29527119
doi: 10.1111/ejss.12521
Pfeilmeier, S. et al. The plant NADPH oxidase RBOHD is required for microbiota homeostasis in leaves. Nat. Microbiol. 6, 852–864 (2021).
pubmed: 34194036
doi: 10.1038/s41564-021-00929-5
Carlström, C. I. et al. Synthetic microbiota reveal priority effects and keystone strains in the Arabidopsis phyllosphere. Nat. Ecol. Evol. 3, 1445–1454 (2019).
pubmed: 31558832
pmcid: 6774761
doi: 10.1038/s41559-019-0994-z
Wood-Charlson, E. M. et al. The National Microbiome Data Collaborative: enabling microbiome science. Nat. Rev. Microbiol. 18, 313–314 (2020).
pubmed: 32350400
doi: 10.1038/s41579-020-0377-0
Beck, A. E., Kleiner, M. & Garrell, A.-K. Elucidating plant-microbe-environment interactions through omics-enabled metabolic modelling using synthetic communities. Front. Plant Sci. 13, 910377 (2022).
pubmed: 35795346
doi: 10.3389/fpls.2022.910377
Garrido-Oter, R. et al. Modular traits of the rhizobiales root microbiota and their evolutionary relationship with symbiotic rhizobia. Cell Host Microbe 24, 155–167.e5 (2018).
pubmed: 30001518
doi: 10.1016/j.chom.2018.06.006
Mukherjee, S. et al. Twenty-five years of Genomes OnLine Database (GOLD): data updates and new features in v.9. Nucleic Acids Res. 51, D957–D963 (2023).
pubmed: 36318257
doi: 10.1093/nar/gkac974
Venkataraman, M. et al. Synthetic biology toolbox for nitrogen-fixing soil microbes. ACS Synth. Biol. 12, 3623–3634 (2023).
pubmed: 37988619
doi: 10.1021/acssynbio.3c00414
Salem, H. & Kaltenpoth, M. The Nagoya Protocol and its implications for microbiology. Nat. Microbiol. 8, 2234–2237 (2023).
pubmed: 38030904
doi: 10.1038/s41564-023-01532-6
Hitch, T. C. A. et al. Broad diversity of human gut bacteria accessible via a traceable strain deposition system. Preprint at https://www.biorxiv.org/content/10.1101/2024.06.20.599854v1 (2024).
Ma, K.-W. et al. Coordination of microbe–host homeostasis by crosstalk with plant innate immunity. Nat. Plants 7, 814–825 (2021).
pubmed: 34031541
doi: 10.1038/s41477-021-00920-2
Niu, B., Paulson, J. N., Zheng, X. & Kolter, R. Simplified and representative bacterial community of maize roots. Proc. Natl Acad. Sci. USA 114, E2450–E2459 (2017).
pubmed: 28275097
pmcid: 5373366
doi: 10.1073/pnas.1616148114
Mehlferber, E. et al. A cross-systems primer for synthetic microbial communities. Nat. Microbiol. https://doi.org/10.1038/s41564-024-01827-2 (2024).
Mueller, U. G. et al. Artificial selection on microbiomes to breed microbiomes that confer salt tolerance to plants. mSystems 6, e01125-21 (2021).
pubmed: 34846165
pmcid: 8631316
doi: 10.1128/mSystems.01125-21
Batstone, R. T., O’Brien, A. M., Harrison, T. L. & Frederickson, M. E. Experimental evolution makes microbes more cooperative with their local host genotype. Science 370, 476–478 (2020).
pubmed: 33093112
doi: 10.1126/science.abb7222
Li, E. et al. Rapid evolution of bacterial mutualism in the plant rhizosphere. Nat. Commun. 12, 3829 (2021).
pubmed: 34158504
pmcid: 8219802
doi: 10.1038/s41467-021-24005-y
Ordon, J. et al. Chromosomal barcodes for simultaneous tracking of near-isogenic bacterial strains in plant microbiota. Nat. Microbiol. 9, 1117–1129 (2024).
pubmed: 38503974
pmcid: 10994850
doi: 10.1038/s41564-024-01619-8
Daniel, B. B. J. et al. Assessing microbiome population dynamics using wild-type isogenic standardized hybrid (WISH)-tags. Nat. Microbiol. 9, 1103–1116 (2024).
pubmed: 38503975
pmcid: 10994841
doi: 10.1038/s41564-024-01634-9
Sun, X. et al. Metabolic interactions affect the biomass of synthetic bacterial biofilm communities. mSystems 8, e01045-23 (2023).
pubmed: 37971263
pmcid: 10734490
doi: 10.1128/msystems.01045-23
Tkacz, A., Hortala, M. & Poole, P. S. Absolute quantitation of microbiota abundance in environmental samples. Microbiome 6, 110 (2018).
pubmed: 29921326
pmcid: 6009823
doi: 10.1186/s40168-018-0491-7
Marín, O., González, B. & Poupin, M. J. From microbial dynamics to functionality in the rhizosphere: a systematic review of the opportunities with synthetic microbial communities. Front. Plant Sci. 12, 650609 (2021).
pubmed: 34149752
pmcid: 8210828
doi: 10.3389/fpls.2021.650609
Coker, J. et al. A reproducible and tunable synthetic soil microbial community provides new insights into microbial ecology. mSystems 7, e00951-22 (2022).
pubmed: 36472419
pmcid: 9765266
doi: 10.1128/msystems.00951-22
Parnell, J. J., Vintila, S., Tang, C., Wagner, M. R. & Kleiner, M. Evaluation of ready-to-use freezer stocks of a synthetic microbial community for maize root colonization. Microbiol. Spectr. 12, e02401–e02423 (2024).
pubmed: 38084978
doi: 10.1128/spectrum.02401-23
Pacheco, A. R., Pauvert, C., Kishore, D. & Segrè, D. Toward FAIR representations of microbial interactions. mSystems 7, e00659-22 (2022).
pubmed: 36005399
pmcid: 9599284
doi: 10.1128/msystems.00659-22
Liu, S. et al. Opportunities and challenges of using metagenomic data to bring uncultured microbes into cultivation. Microbiome 10, 76 (2022).
pubmed: 35546409
pmcid: 9097414
doi: 10.1186/s40168-022-01272-5
Cross, K. L. et al. Targeted isolation and cultivation of uncultivated bacteria by reverse genomics. Nat. Biotechnol. 37, 1314–1321 (2019).
pubmed: 31570900
pmcid: 6858544
doi: 10.1038/s41587-019-0260-6
Huang, Y. et al. High-throughput microbial culturomics using automation and machine learning. Nat. Biotechnol. 41, 1424–1433 (2023).
pubmed: 36805559
pmcid: 10567565
doi: 10.1038/s41587-023-01674-2
Saarenpää, S. et al. Spatial metatranscriptomics resolves host–bacteria–fungi interactomes. Nat. Biotech. 42, 1384–1393 (2024).
doi: 10.1038/s41587-023-01979-2
Moyne, O. et al. Guild and niche determination enable targeted alteration of the microbiome. Preprint at https://www.biorxiv.org/content/biorxiv/early/2023/05/11/2023.05.11.540389.full.pdf (2023).
Cole, B. et al. Plant single-cell solutions for energy and the environment. Commun. Biol. 4, 962 (2021).
pubmed: 34385583
pmcid: 8361165
doi: 10.1038/s42003-021-02477-4
Liu, Z. et al. Integrated single-nucleus and spatial transcriptomics captures transitional states in soybean nodule maturation. Nat. Plants 9, 515–524 (2023).
pubmed: 37055554
doi: 10.1038/s41477-023-01387-z
Guimarães, N. M., Azevedo, N. F. & Almeida, C. in Fluorescence In-Situ Hybridization (FISH) for Microbial Cells: Methods and Concepts (eds Azevedo, N. F. & Almeida, C.) 17–33 (Springer, 2021); https://doi.org/10.1007/978-1-0716-1115-9_2
Cao, Z. et al. Spatial profiling of microbial communities by sequential FISH with error-robust encoding. Nat. Commun. 14, 1477 (2023).
pubmed: 36932092
pmcid: 10023729
doi: 10.1038/s41467-023-37188-3
Ge, X. et al. SRS-FISH: a high-throughput platform linking microbiome metabolism to identity at the single-cell level. Proc. Natl Acad. Sci. USA 119, e2203519119 (2022).
pubmed: 35727976
pmcid: 9245642
doi: 10.1073/pnas.2203519119
Vidal, A. et al. Linking 3D soil structure and plant-microbe-soil carbon transfer in the rhizosphere. Front. Environ. Sci. https://doi.org/10.3389/fenvs.2018.00009 (2018).
Salvato, F., Vintila, S., Finkel, O. M., Dangl, J. L. & Kleiner, M. Evaluation of protein extraction methods for metaproteomic analyses of root-associated microbes. Mol. Plant Microbe Interact. 35, 977–988 (2022).
pubmed: 35876747
doi: 10.1094/MPMI-05-22-0116-TA
Zhalnina, K. et al. Dynamic root exudate chemistry and microbial substrate preferences drive patterns in rhizosphere microbial community assembly. Nat. Microbiol. 3, 470–480 (2018).
pubmed: 29556109
doi: 10.1038/s41564-018-0129-3
Finkel, O. M. et al. A single bacterial genus maintains root growth in a complex microbiome. Nature 587, 103–108 (2020).
pubmed: 32999461
pmcid: 10329457
doi: 10.1038/s41586-020-2778-7
Kleiner, M. et al. Ultra-sensitive isotope probing to quantify activity and substrate assimilation in microbiomes. Microbiome 11, 24 (2023).
pubmed: 36755313
pmcid: 9909930
doi: 10.1186/s40168-022-01454-1
Nuccio, E. E. et al. HT-SIP: a semi-automated stable isotope probing pipeline identifies cross-kingdom interactions in the hyphosphere of arbuscular mycorrhizal fungi. Microbiome 10, 199 (2022).
pubmed: 36434737
pmcid: 9700909
doi: 10.1186/s40168-022-01391-z
Berry, D. et al. Tracking heavy water (D
pubmed: 25550518
doi: 10.1073/pnas.1420406112
Taylor, M. J., Lukowski, J. K. & Anderton, C. R. Spatially resolved mass spectrometry at the single cell: recent innovations in proteomics and metabolomics. J. Am. Soc. Mass. Spectrom. 32, 872–894 (2021).
pubmed: 33656885
pmcid: 8033567
doi: 10.1021/jasms.0c00439
Shi, H. et al. Highly multiplexed spatial mapping of microbial communities. Nature 588, 676–681 (2020).
pubmed: 33268897
pmcid: 8050837
doi: 10.1038/s41586-020-2983-4
Veličković, D., Lin, V. S., Rivas, A., Anderton, C. R. & Moran, J. J. An approach for broad molecular imaging of the root-soil interface via indirect matrix-assisted laser desorption/ionization mass spectrometry. Soil Biol. Biochem. 146, 107804 (2020).
doi: 10.1016/j.soilbio.2020.107804
Lohse, M. et al. Direct imaging of plant metabolites in the rhizosphere using laser desorption ionization ultra-high resolution mass spectrometry. Front. Plant Sci. 12, 753812 (2021).
pubmed: 34925405
pmcid: 8678481
doi: 10.3389/fpls.2021.753812
Hansen, B. L. et al. Cooperation, competition and specialized metabolism in a simplified root nodule microbiome. mBio 11, e01917-20 (2020).
pubmed: 32843548
pmcid: 7448283
doi: 10.1128/mBio.01917-20
Ryffel, F. et al. Metabolic footprint of epiphytic bacteria on Arabidopsis thaliana leaves. ISME J. 10, 632–643 (2016).
pubmed: 26305156
doi: 10.1038/ismej.2015.141
Geier, B. et al. Spatial metabolomics of in situ host–microbe interactions at the micrometre scale. Nat. Microbiol. 5, 498–510 (2020).
pubmed: 32015496
doi: 10.1038/s41564-019-0664-6
Piehowski, P. D. et al. Automated mass spectrometry imaging of over 2,000 proteins from tissue sections at 100-μm spatial resolution. Nat. Commun. 11, 8 (2020).
pubmed: 31911630
pmcid: 6946663
doi: 10.1038/s41467-019-13858-z
Mellinger, A. L., Muddiman, D. C. & Gamcsik, M. P. Highlighting functional mass spectrometry imaging methods in bioanalysis. J. Proteome Res. 21, 1800–1807 (2022).
pubmed: 35749637
doi: 10.1021/acs.jproteome.2c00220
Mönchgesang, S. et al. Natural variation of root exudates in Arabidopsis thaliana-linking metabolomic and genomic data. Sci. Rep. 6, 29033 (2016).
pubmed: 27363486
pmcid: 4929559
doi: 10.1038/srep29033
Dell’Acqua, M. et al. Genetic properties of the MAGIC maize population: a new platform for high definition QTL mapping in Zea mays. Genome Biol. 16, 167 (2015).
pubmed: 26357913
pmcid: 4566846
doi: 10.1186/s13059-015-0716-z
Arkin, A. P. et al. KBase: The United States Department of Energy Systems Biology Knowledgebase. Nat. Biotechnol. 36, 566–569 (2018).
pubmed: 29979655
pmcid: 6870991
doi: 10.1038/nbt.4163
Zhou, Z. et al. METABOLIC: high-throughput profiling of microbial genomes for functional traits, metabolism, biogeochemistry and community-scale functional networks. Microbiome 10, 33 (2022).
pubmed: 35172890
pmcid: 8851854
doi: 10.1186/s40168-021-01213-8
Levy Karin, E., Mirdita, M. & Söding, J. MetaEuk—sensitive, high-throughput gene discovery, and annotation for large-scale eukaryotic metagenomics. Microbiome 8, 48 (2020).
pubmed: 32245390
pmcid: 7126354
doi: 10.1186/s40168-020-00808-x
Price, M. N. et al. Mutant phenotypes for thousands of bacterial genes of unknown function. Nature 557, 503–509 (2018).
pubmed: 29769716
doi: 10.1038/s41586-018-0124-0
Luneau, J. S. et al. Genome‐wide identification of fitness determinants in the Xanthomonas campestris bacterial pathogen during early stages of plant infection. N. Phytol. 236, 235–248 (2022).
doi: 10.1111/nph.18313
Mutalik, V. K. et al. Dual-barcoded shotgun expression library sequencing for high-throughput characterization of functional traits in bacteria. Nat. Commun. 10, 308 (2019).
pubmed: 30659179
pmcid: 6338753
doi: 10.1038/s41467-018-08177-8
Liu, X. et al. Genome-wide CRISPRi screens reveal the essentialome and determinants for susceptibility to dalbavancin in Staphylococcus aureus. mSystems. 9, e01289–23 (2024).
pubmed: 38837392
pmcid: 11265419
doi: 10.1128/msystems.01289-23
Peters, J. M. et al. A comprehensive, CRISPR-based functional analysis of essential genes in bacteria. Cell 165, 1493–1506 (2016).
pubmed: 27238023
pmcid: 4894308
doi: 10.1016/j.cell.2016.05.003
Fang, X., Lloyd, C. J. & Palsson, B. O. Reconstructing organisms in silico: genome-scale models and their emerging applications. Nat. Rev. Microbiol. 18, 731–743 (2020).
pubmed: 32958892
pmcid: 7981288
doi: 10.1038/s41579-020-00440-4
Zengler, K. et al. EcoFABs: advancing microbiome science through standardized fabricated ecosystems. Nat. Methods 16, 567–571 (2019).
pubmed: 31227812
doi: 10.1038/s41592-019-0465-0
Novak, V. et al. Reproducible growth of Brachypodium distachyon in fabricated ecosystems (EcoFAB 2.0) reveals that nitrogen form and starvation modulate root exudation. Sci. Adv. 10, eadg7888 (2024).
pubmed: 38170767
doi: 10.1126/sciadv.adg7888
Sasse, J. et al. Multilab EcoFAB study shows highly reproducible physiology and depletion of soil metabolites by a model grass. N. Phytol. 222, 1149–1160 (2019).
doi: 10.1111/nph.15662
Yee, M. O. et al. Specialized plant growth chamber designs to study complex rhizosphere interactions. Front. Microbiol. 12, 625752 (2021).
pubmed: 33841353
doi: 10.3389/fmicb.2021.625752
Del Valle, I., Gao, X., Ghezzehei, T. A., Silberg, J. J. & Masiello, C. A. Artificial soils reveal individual factor controls on microbial processes. mSystems 7, e00301–e00322 (2022).
pubmed: 35880897
McLaughlin, S., Zhalnina, K., Kosina, S., Northen, T. R. & Sasse, J. The core metabolome and root exudation dynamics of three phylogenetically distinct plant species. Nat. Commun. 14, 1649 (2023).
pubmed: 36964135
pmcid: 10039077
doi: 10.1038/s41467-023-37164-x
Dar, D., Dar, N., Cai, L. & Newman, D. K. Spatial transcriptomics of planktonic and sessile bacterial populations at single-cell resolution. Science 373, eabi4882 (2021).
pubmed: 34385369
pmcid: 8454218
doi: 10.1126/science.abi4882
Wei, L. et al. Imaging complex protein metabolism in live organisms by stimulated Raman scattering microscopy with isotope labeling. ACS Chem. Biol. 10, 901–908 (2015).
pubmed: 25560305
pmcid: 4610303
doi: 10.1021/cb500787b
Hornby, D. Suppressive soils. Annu. Rev. Phytopathol. 21, 65–85 (1983).
doi: 10.1146/annurev.py.21.090183.000433
Mendes, R. et al. Deciphering the rhizosphere microbiome for disease-suppressive bacteria. Science 332, 1097–1100 (2011).
pubmed: 21551032
doi: 10.1126/science.1203980
Weller, D. M., Raaijmakers, J. M., Gardener, B. B. M. & Thomashow, L. S. Microbial populations responsible for specific soil suppressiveness to plant pathogens. Annu. Rev. Phytopathol. 40, 309–348 (2002).
pubmed: 12147763
doi: 10.1146/annurev.phyto.40.030402.110010
Delmotte, N. et al. Community proteogenomics reveals insights into the physiology of phyllosphere bacteria. Proc. Natl Acad. Sci. USA 106, 16428–16433 (2009).
pubmed: 19805315
doi: 10.1073/pnas.0905240106
Knief, C. et al. Metaproteogenomic analysis of microbial communities in the phyllosphere and rhizosphere of rice. ISME J. 6, 1378–1390 (2012).
pubmed: 22189496
doi: 10.1038/ismej.2011.192
Lundberg, D. S. et al. Defining the core Arabidopsis thaliana root microbiome. Nature 488, 86–90 (2012).
pubmed: 22859206
doi: 10.1038/nature11237
Bulgarelli, D. et al. Revealing structure and assembly cues for Arabidopsis root-inhabiting bacterial microbiota. Nature 488, 91–95 (2012).
pubmed: 22859207
doi: 10.1038/nature11336
Peiffer, J. A. et al. Diversity and heritability of the maize rhizosphere microbiome under field conditions. Proc. Natl Acad. Sci. USA 110, 6548–6553 (2013).
pubmed: 23576752
doi: 10.1073/pnas.1302837110
Horton, M. W. et al. Genome-wide association study of Arabidopsis thaliana leaf microbial community. Nat. Commun. 5, 5320 (2014).
pubmed: 25382143
doi: 10.1038/ncomms6320
Bodenhausen, N., Bortfeld-Miller, M., Ackermann, M. & Vorholt, J. A. A synthetic community approach reveals plant genotypes affecting the phyllosphere microbiota. PLoS Genet. 10, e1004283 (2014).
pubmed: 24743269
doi: 10.1371/journal.pgen.1004283
Bulgarelli, D., Schlaeppi, K., Spaepen, S., Van Themaat, E. V. L. & Schulze-Lefert, P. Structure and functions of the bacterial microbiota of plants. Annu. Rev. Plant Biol. 64, 807–838 (2013).
pubmed: 23373698
doi: 10.1146/annurev-arplant-050312-120106
Pérez-Jaramillo, J. E. et al. Deciphering rhizosphere microbiome assembly of wild and modern common bean (Phaseolus vulgaris) in native and agricultural soils from Colombia. Microbiome 7, 114 (2019).
pubmed: 31412927
doi: 10.1186/s40168-019-0727-1
Ji, N., Liang, D., Clark, L. V., Sacks, E. J. & Kent, A. D. Host genetic variation drives the differentiation in the ecological role of the native Miscanthus root-associated microbiome. Microbiome 11, 216 (2023).
pubmed: 37777794
pmcid: 10541700
doi: 10.1186/s40168-023-01646-3
He, X. et al. Heritable microbiome variation is correlated with source environment in locally adapted maize varieties. Nat. Plants 10, 598–617 (2024).
pubmed: 38514787
doi: 10.1038/s41477-024-01654-7
Lebeis, S. L. et al. Salicylic acid modulates colonization of the root microbiome by specific bacterial taxa. Science 349, 860–864 (2015).
pubmed: 26184915
doi: 10.1126/science.aaa8764
Agler, M. T. et al. Microbial hub taxa link host and abiotic factors to plant microbiome variation. PLoS Biol. 14, e1002352 (2016).
pubmed: 26788878
pmcid: 4720289
doi: 10.1371/journal.pbio.1002352
Liu, X. et al. Phyllosphere microbiome induces host metabolic defence against rice false-smut disease. Nat. Microbiol. 8, 1419–1433 (2023).
pubmed: 37142774
doi: 10.1038/s41564-023-01379-x
Zhou, X. et al. Cross-kingdom synthetic microbiota supports tomato suppression of Fusarium wilt disease. Nat. Commun. 13, 7890 (2022).
pubmed: 36550095
pmcid: 9780251
doi: 10.1038/s41467-022-35452-6
Chen, T. et al. A plant genetic network for preventing dysbiosis in the phyllosphere. Nature 580, 653–657 (2020).
pubmed: 32350464
pmcid: 7197412
doi: 10.1038/s41586-020-2185-0
Oyserman, B. O. et al. Disentangling the genetic basis of rhizosphere microbiome assembly in tomato. Nat. Commun. 13, 3228 (2022).
pubmed: 35710629
pmcid: 9203511
doi: 10.1038/s41467-022-30849-9
Su, P. et al. Microbiome homeostasis on rice leaves is regulated by a precursor molecule of lignin biosynthesis. Nat. Commun. 15, 23 (2024).
pubmed: 38167850
pmcid: 10762202
doi: 10.1038/s41467-023-44335-3
Castrillo, G. et al. Root microbiota drive direct integration of phosphate stress and immunity. Nature 543, 513–518 (2017).
pubmed: 28297714
pmcid: 5364063
doi: 10.1038/nature21417
Harbort, C. J. et al. Root-secreted coumarins and the microbiota interact to improve iron nutrition in Arabidopsis. Cell Host Microbe 28, 825–837.e6 (2020).
pubmed: 33027611
pmcid: 7738756
doi: 10.1016/j.chom.2020.09.006
Teixeira, P. J. P. L. et al. Specific modulation of the root immune system by a community of commensal bacteria. Proc. Natl Acad. Sci. USA 118, e2100678118 (2021).
pubmed: 33879573
pmcid: 8072228
doi: 10.1073/pnas.2100678118
Salas-González, I. et al. Coordination between microbiota and root endodermis supports plant mineral nutrient homeostasis. Science 371, eabd0695 (2021).
pubmed: 33214288
doi: 10.1126/science.abd0695
Xu, L. et al. Drought delays development of the sorghum root microbiome and enriches for monoderm bacteria. Proc. Natl Acad. Sci. USA 115, E4284–E4293 (2018).
pubmed: 29666229
pmcid: 5939072
doi: 10.1073/pnas.1717308115
Wang, M. et al. Dynamic root microbiome sustains soybean productivity under unbalanced fertilization. Nat. Commun. 15, 1668 (2024).
pubmed: 38395981
pmcid: 10891064
doi: 10.1038/s41467-024-45925-5
Fitzpatrick, C. R. et al. Assembly and ecological function of the root microbiome across angiosperm plant species. Proc. Natl Acad. Sci. USA 115, E1157–E1165 (2018).
pubmed: 29358405
pmcid: 5819437
doi: 10.1073/pnas.1717617115