Community standards and future opportunities for synthetic communities in plant-microbiota research.


Journal

Nature microbiology
ISSN: 2058-5276
Titre abrégé: Nat Microbiol
Pays: England
ID NLM: 101674869

Informations de publication

Date de publication:
Nov 2024
Historique:
received: 30 10 2023
accepted: 16 09 2024
medline: 31 10 2024
pubmed: 31 10 2024
entrez: 31 10 2024
Statut: ppublish

Résumé

Harnessing beneficial microorganisms is seen as a promising approach to enhance sustainable agriculture production. Synthetic communities (SynComs) are increasingly being used to study relevant microbial activities and interactions with the plant host. Yet, the lack of community standards limits the efficiency and progress in this important area of research. To address this gap, we recommend three actions: (1) defining reference SynComs; (2) establishing community standards, protocols and benchmark data for constructing and using SynComs; and (3) creating an infrastructure for sharing strains and data. We also outline opportunities to develop SynCom research through technical advances, linking to field studies, and filling taxonomic blind spots to move towards fully representative SynComs.

Identifiants

pubmed: 39478084
doi: 10.1038/s41564-024-01833-4
pii: 10.1038/s41564-024-01833-4
doi:

Types de publication

Journal Article Review

Langues

eng

Sous-ensembles de citation

IM

Pagination

2774-2784

Subventions

Organisme : Novo Nordisk Fonden (Novo Nordisk Foundation)
ID : NNF19SA0059360
Organisme : Novo Nordisk Fonden (Novo Nordisk Foundation)
ID : NNF19SA0059360
Organisme : Novo Nordisk Fonden (Novo Nordisk Foundation)
ID : NNF19SA0059360
Organisme : Novo Nordisk Fonden (Novo Nordisk Foundation)
ID : NNF19SA0059360
Organisme : Tata Institute of Fundamental Research (TIFR)
ID : TATA Transformation prize in Food Security
Organisme : RCUK | Biotechnology and Biological Sciences Research Council (BBSRC)
ID : BB/X010953/1; BBS/E/RH/230003B
Organisme : Deutsche Forschungsgemeinschaft (German Research Foundation)
ID : DECRyPT, SPP2125

Informations de copyright

© 2024. Springer Nature Limited.

Références

Bulgarelli, D. Structure and function of the bacterial root microbiota in wild and domesticated barley. Cell Host Microbe 17, 392–403 (2015).
pubmed: 25732064 pmcid: 4362959 doi: 10.1016/j.chom.2015.01.011
Turner, T. R., James, E. K. & Poole, P. S. The plant microbiome. Genome Biol. 14, 209 (2013).
pubmed: 23805896 pmcid: 3706808 doi: 10.1186/gb-2013-14-6-209
Geller, A. M. & Levy, A. ‘What I cannot create, I do not understand’: elucidating microbe-microbe interactions to facilitate plant microbiome engineering. Curr. Opin. Microbiol. 72, 102283 (2023).
pubmed: 36868050 doi: 10.1016/j.mib.2023.102283
Vorholt, J. A., Vogel, C., Carlström, C. I. & Müller, D. B. Establishing causality: opportunities of synthetic communities for plant microbiome research. Cell Host Microbe 22, 142–155 (2017).
pubmed: 28799900 doi: 10.1016/j.chom.2017.07.004
Bai, Y. et al. Functional overlap of the Arabidopsis leaf and root microbiota. Nature 528, 364–369 (2015).
pubmed: 26633631 doi: 10.1038/nature16192
Zhang, J. et al. High-throughput cultivation and identification of bacteria from the plant root microbiota. Nat. Protoc. 16, 988–1012 (2021).
pubmed: 33442053 doi: 10.1038/s41596-020-00444-7
Zhang, J. et al. NRT1.1B is associated with root microbiota composition and nitrogen use in field-grown rice. Nat. Biotechnol. 37, 676–684 (2019).
pubmed: 31036930 doi: 10.1038/s41587-019-0104-4
Wippel, K. et al. Host preference and invasiveness of commensal bacteria in the Lotus and Arabidopsis root microbiota. Nat. Microbiol. 6, 1150–1162 (2021).
pubmed: 34312531 pmcid: 8387241 doi: 10.1038/s41564-021-00941-9
Durán, P. et al. Microbial interkingdom interactions in roots promote Arabidopsis survival. Cell 175, 973–983.e14 (2018).
pubmed: 30388454 pmcid: 6218654 doi: 10.1016/j.cell.2018.10.020
Robertson-Albertyn, S. et al. Genome-annotated bacterial collection of the barley rhizosphere microbiota. Microbiol. Resour. Announc. 11, e01064-21 (2022).
pubmed: 35175125 doi: 10.1128/mra.01064-21
Durán, P. et al. Shared features and reciprocal complementation of the Chlamydomonas and Arabidopsis microbiota. Nat. Commun. 13, 406 (2022).
pubmed: 35058457 doi: 10.1038/s41467-022-28055-8
Kremer, J. M. et al. Peat-based gnotobiotic plant growth systems for Arabidopsis microbiome research. Nat. Protoc. 16, 2450–2470 (2021).
pubmed: 33911260 doi: 10.1038/s41596-021-00504-6
Cole, B. J. et al. Genome-wide identification of bacterial plant colonization genes. PLoS Biol. 15, e2002860 (2017).
pubmed: 28938018 doi: 10.1371/journal.pbio.2002860
Wheatley, R. M. et al. Lifestyle adaptations of Rhizobium from rhizosphere to symbiosis. Proc. Natl Acad. Sci. USA 117, 23823–23834 (2020).
pubmed: 32900931 doi: 10.1073/pnas.2009094117
Levy, A. et al. Genomic features of bacterial adaptation to plants. Nat. Genet. 50, 138–150 (2018).
doi: 10.1038/s41588-017-0012-9
Schäfer, M. et al. Metabolic interaction models recapitulate leaf microbiota ecology. Science 381, eadf5121 (2023).
pubmed: 37410834 doi: 10.1126/science.adf5121
Sheth, R. U. et al. Spatial metagenomic characterization of microbial biogeography in the gut. Nat. Biotechnol. 37, 877–883 (2019).
pubmed: 31332325 doi: 10.1038/s41587-019-0183-2
Lötstedt, B. et al. Spatial host–microbiome sequencing reveals niches in the mouse gut. Nat. Biotech. 42, 1394–1403 (2024).
doi: 10.1038/s41587-023-01988-1
Johnston, A. E. & Poulton, P. R. The importance of long‐term experiments in agriculture: their management to ensure continued crop production and soil fertility; the Rothamsted experience. Eur. J. Soil Sci. 69, 113–125 (2018).
pubmed: 29527119 doi: 10.1111/ejss.12521
Pfeilmeier, S. et al. The plant NADPH oxidase RBOHD is required for microbiota homeostasis in leaves. Nat. Microbiol. 6, 852–864 (2021).
pubmed: 34194036 doi: 10.1038/s41564-021-00929-5
Carlström, C. I. et al. Synthetic microbiota reveal priority effects and keystone strains in the Arabidopsis phyllosphere. Nat. Ecol. Evol. 3, 1445–1454 (2019).
pubmed: 31558832 pmcid: 6774761 doi: 10.1038/s41559-019-0994-z
Wood-Charlson, E. M. et al. The National Microbiome Data Collaborative: enabling microbiome science. Nat. Rev. Microbiol. 18, 313–314 (2020).
pubmed: 32350400 doi: 10.1038/s41579-020-0377-0
Beck, A. E., Kleiner, M. & Garrell, A.-K. Elucidating plant-microbe-environment interactions through omics-enabled metabolic modelling using synthetic communities. Front. Plant Sci. 13, 910377 (2022).
pubmed: 35795346 doi: 10.3389/fpls.2022.910377
Garrido-Oter, R. et al. Modular traits of the rhizobiales root microbiota and their evolutionary relationship with symbiotic rhizobia. Cell Host Microbe 24, 155–167.e5 (2018).
pubmed: 30001518 doi: 10.1016/j.chom.2018.06.006
Mukherjee, S. et al. Twenty-five years of Genomes OnLine Database (GOLD): data updates and new features in v.9. Nucleic Acids Res. 51, D957–D963 (2023).
pubmed: 36318257 doi: 10.1093/nar/gkac974
Venkataraman, M. et al. Synthetic biology toolbox for nitrogen-fixing soil microbes. ACS Synth. Biol. 12, 3623–3634 (2023).
pubmed: 37988619 doi: 10.1021/acssynbio.3c00414
Salem, H. & Kaltenpoth, M. The Nagoya Protocol and its implications for microbiology. Nat. Microbiol. 8, 2234–2237 (2023).
pubmed: 38030904 doi: 10.1038/s41564-023-01532-6
Hitch, T. C. A. et al. Broad diversity of human gut bacteria accessible via a traceable strain deposition system. Preprint at https://www.biorxiv.org/content/10.1101/2024.06.20.599854v1 (2024).
Ma, K.-W. et al. Coordination of microbe–host homeostasis by crosstalk with plant innate immunity. Nat. Plants 7, 814–825 (2021).
pubmed: 34031541 doi: 10.1038/s41477-021-00920-2
Niu, B., Paulson, J. N., Zheng, X. & Kolter, R. Simplified and representative bacterial community of maize roots. Proc. Natl Acad. Sci. USA 114, E2450–E2459 (2017).
pubmed: 28275097 pmcid: 5373366 doi: 10.1073/pnas.1616148114
Mehlferber, E. et al. A cross-systems primer for synthetic microbial communities. Nat. Microbiol. https://doi.org/10.1038/s41564-024-01827-2 (2024).
Mueller, U. G. et al. Artificial selection on microbiomes to breed microbiomes that confer salt tolerance to plants. mSystems 6, e01125-21 (2021).
pubmed: 34846165 pmcid: 8631316 doi: 10.1128/mSystems.01125-21
Batstone, R. T., O’Brien, A. M., Harrison, T. L. & Frederickson, M. E. Experimental evolution makes microbes more cooperative with their local host genotype. Science 370, 476–478 (2020).
pubmed: 33093112 doi: 10.1126/science.abb7222
Li, E. et al. Rapid evolution of bacterial mutualism in the plant rhizosphere. Nat. Commun. 12, 3829 (2021).
pubmed: 34158504 pmcid: 8219802 doi: 10.1038/s41467-021-24005-y
Ordon, J. et al. Chromosomal barcodes for simultaneous tracking of near-isogenic bacterial strains in plant microbiota. Nat. Microbiol. 9, 1117–1129 (2024).
pubmed: 38503974 pmcid: 10994850 doi: 10.1038/s41564-024-01619-8
Daniel, B. B. J. et al. Assessing microbiome population dynamics using wild-type isogenic standardized hybrid (WISH)-tags. Nat. Microbiol. 9, 1103–1116 (2024).
pubmed: 38503975 pmcid: 10994841 doi: 10.1038/s41564-024-01634-9
Sun, X. et al. Metabolic interactions affect the biomass of synthetic bacterial biofilm communities. mSystems 8, e01045-23 (2023).
pubmed: 37971263 pmcid: 10734490 doi: 10.1128/msystems.01045-23
Tkacz, A., Hortala, M. & Poole, P. S. Absolute quantitation of microbiota abundance in environmental samples. Microbiome 6, 110 (2018).
pubmed: 29921326 pmcid: 6009823 doi: 10.1186/s40168-018-0491-7
Marín, O., González, B. & Poupin, M. J. From microbial dynamics to functionality in the rhizosphere: a systematic review of the opportunities with synthetic microbial communities. Front. Plant Sci. 12, 650609 (2021).
pubmed: 34149752 pmcid: 8210828 doi: 10.3389/fpls.2021.650609
Coker, J. et al. A reproducible and tunable synthetic soil microbial community provides new insights into microbial ecology. mSystems 7, e00951-22 (2022).
pubmed: 36472419 pmcid: 9765266 doi: 10.1128/msystems.00951-22
Parnell, J. J., Vintila, S., Tang, C., Wagner, M. R. & Kleiner, M. Evaluation of ready-to-use freezer stocks of a synthetic microbial community for maize root colonization. Microbiol. Spectr. 12, e02401–e02423 (2024).
pubmed: 38084978 doi: 10.1128/spectrum.02401-23
Pacheco, A. R., Pauvert, C., Kishore, D. & Segrè, D. Toward FAIR representations of microbial interactions. mSystems 7, e00659-22 (2022).
pubmed: 36005399 pmcid: 9599284 doi: 10.1128/msystems.00659-22
Liu, S. et al. Opportunities and challenges of using metagenomic data to bring uncultured microbes into cultivation. Microbiome 10, 76 (2022).
pubmed: 35546409 pmcid: 9097414 doi: 10.1186/s40168-022-01272-5
Cross, K. L. et al. Targeted isolation and cultivation of uncultivated bacteria by reverse genomics. Nat. Biotechnol. 37, 1314–1321 (2019).
pubmed: 31570900 pmcid: 6858544 doi: 10.1038/s41587-019-0260-6
Huang, Y. et al. High-throughput microbial culturomics using automation and machine learning. Nat. Biotechnol. 41, 1424–1433 (2023).
pubmed: 36805559 pmcid: 10567565 doi: 10.1038/s41587-023-01674-2
Saarenpää, S. et al. Spatial metatranscriptomics resolves host–bacteria–fungi interactomes. Nat. Biotech. 42, 1384–1393 (2024).
doi: 10.1038/s41587-023-01979-2
Moyne, O. et al. Guild and niche determination enable targeted alteration of the microbiome. Preprint at https://www.biorxiv.org/content/biorxiv/early/2023/05/11/2023.05.11.540389.full.pdf (2023).
Cole, B. et al. Plant single-cell solutions for energy and the environment. Commun. Biol. 4, 962 (2021).
pubmed: 34385583 pmcid: 8361165 doi: 10.1038/s42003-021-02477-4
Liu, Z. et al. Integrated single-nucleus and spatial transcriptomics captures transitional states in soybean nodule maturation. Nat. Plants 9, 515–524 (2023).
pubmed: 37055554 doi: 10.1038/s41477-023-01387-z
Guimarães, N. M., Azevedo, N. F. & Almeida, C. in Fluorescence In-Situ Hybridization (FISH) for Microbial Cells: Methods and Concepts (eds Azevedo, N. F. & Almeida, C.) 17–33 (Springer, 2021); https://doi.org/10.1007/978-1-0716-1115-9_2
Cao, Z. et al. Spatial profiling of microbial communities by sequential FISH with error-robust encoding. Nat. Commun. 14, 1477 (2023).
pubmed: 36932092 pmcid: 10023729 doi: 10.1038/s41467-023-37188-3
Ge, X. et al. SRS-FISH: a high-throughput platform linking microbiome metabolism to identity at the single-cell level. Proc. Natl Acad. Sci. USA 119, e2203519119 (2022).
pubmed: 35727976 pmcid: 9245642 doi: 10.1073/pnas.2203519119
Vidal, A. et al. Linking 3D soil structure and plant-microbe-soil carbon transfer in the rhizosphere. Front. Environ. Sci. https://doi.org/10.3389/fenvs.2018.00009 (2018).
Salvato, F., Vintila, S., Finkel, O. M., Dangl, J. L. & Kleiner, M. Evaluation of protein extraction methods for metaproteomic analyses of root-associated microbes. Mol. Plant Microbe Interact. 35, 977–988 (2022).
pubmed: 35876747 doi: 10.1094/MPMI-05-22-0116-TA
Zhalnina, K. et al. Dynamic root exudate chemistry and microbial substrate preferences drive patterns in rhizosphere microbial community assembly. Nat. Microbiol. 3, 470–480 (2018).
pubmed: 29556109 doi: 10.1038/s41564-018-0129-3
Finkel, O. M. et al. A single bacterial genus maintains root growth in a complex microbiome. Nature 587, 103–108 (2020).
pubmed: 32999461 pmcid: 10329457 doi: 10.1038/s41586-020-2778-7
Kleiner, M. et al. Ultra-sensitive isotope probing to quantify activity and substrate assimilation in microbiomes. Microbiome 11, 24 (2023).
pubmed: 36755313 pmcid: 9909930 doi: 10.1186/s40168-022-01454-1
Nuccio, E. E. et al. HT-SIP: a semi-automated stable isotope probing pipeline identifies cross-kingdom interactions in the hyphosphere of arbuscular mycorrhizal fungi. Microbiome 10, 199 (2022).
pubmed: 36434737 pmcid: 9700909 doi: 10.1186/s40168-022-01391-z
Berry, D. et al. Tracking heavy water (D
pubmed: 25550518 doi: 10.1073/pnas.1420406112
Taylor, M. J., Lukowski, J. K. & Anderton, C. R. Spatially resolved mass spectrometry at the single cell: recent innovations in proteomics and metabolomics. J. Am. Soc. Mass. Spectrom. 32, 872–894 (2021).
pubmed: 33656885 pmcid: 8033567 doi: 10.1021/jasms.0c00439
Shi, H. et al. Highly multiplexed spatial mapping of microbial communities. Nature 588, 676–681 (2020).
pubmed: 33268897 pmcid: 8050837 doi: 10.1038/s41586-020-2983-4
Veličković, D., Lin, V. S., Rivas, A., Anderton, C. R. & Moran, J. J. An approach for broad molecular imaging of the root-soil interface via indirect matrix-assisted laser desorption/ionization mass spectrometry. Soil Biol. Biochem. 146, 107804 (2020).
doi: 10.1016/j.soilbio.2020.107804
Lohse, M. et al. Direct imaging of plant metabolites in the rhizosphere using laser desorption ionization ultra-high resolution mass spectrometry. Front. Plant Sci. 12, 753812 (2021).
pubmed: 34925405 pmcid: 8678481 doi: 10.3389/fpls.2021.753812
Hansen, B. L. et al. Cooperation, competition and specialized metabolism in a simplified root nodule microbiome. mBio 11, e01917-20 (2020).
pubmed: 32843548 pmcid: 7448283 doi: 10.1128/mBio.01917-20
Ryffel, F. et al. Metabolic footprint of epiphytic bacteria on Arabidopsis thaliana leaves. ISME J. 10, 632–643 (2016).
pubmed: 26305156 doi: 10.1038/ismej.2015.141
Geier, B. et al. Spatial metabolomics of in situ host–microbe interactions at the micrometre scale. Nat. Microbiol. 5, 498–510 (2020).
pubmed: 32015496 doi: 10.1038/s41564-019-0664-6
Piehowski, P. D. et al. Automated mass spectrometry imaging of over 2,000 proteins from tissue sections at 100-μm spatial resolution. Nat. Commun. 11, 8 (2020).
pubmed: 31911630 pmcid: 6946663 doi: 10.1038/s41467-019-13858-z
Mellinger, A. L., Muddiman, D. C. & Gamcsik, M. P. Highlighting functional mass spectrometry imaging methods in bioanalysis. J. Proteome Res. 21, 1800–1807 (2022).
pubmed: 35749637 doi: 10.1021/acs.jproteome.2c00220
Mönchgesang, S. et al. Natural variation of root exudates in Arabidopsis thaliana-linking metabolomic and genomic data. Sci. Rep. 6, 29033 (2016).
pubmed: 27363486 pmcid: 4929559 doi: 10.1038/srep29033
Dell’Acqua, M. et al. Genetic properties of the MAGIC maize population: a new platform for high definition QTL mapping in Zea mays. Genome Biol. 16, 167 (2015).
pubmed: 26357913 pmcid: 4566846 doi: 10.1186/s13059-015-0716-z
Arkin, A. P. et al. KBase: The United States Department of Energy Systems Biology Knowledgebase. Nat. Biotechnol. 36, 566–569 (2018).
pubmed: 29979655 pmcid: 6870991 doi: 10.1038/nbt.4163
Zhou, Z. et al. METABOLIC: high-throughput profiling of microbial genomes for functional traits, metabolism, biogeochemistry and community-scale functional networks. Microbiome 10, 33 (2022).
pubmed: 35172890 pmcid: 8851854 doi: 10.1186/s40168-021-01213-8
Levy Karin, E., Mirdita, M. & Söding, J. MetaEuk—sensitive, high-throughput gene discovery, and annotation for large-scale eukaryotic metagenomics. Microbiome 8, 48 (2020).
pubmed: 32245390 pmcid: 7126354 doi: 10.1186/s40168-020-00808-x
Price, M. N. et al. Mutant phenotypes for thousands of bacterial genes of unknown function. Nature 557, 503–509 (2018).
pubmed: 29769716 doi: 10.1038/s41586-018-0124-0
Luneau, J. S. et al. Genome‐wide identification of fitness determinants in the Xanthomonas campestris bacterial pathogen during early stages of plant infection. N. Phytol. 236, 235–248 (2022).
doi: 10.1111/nph.18313
Mutalik, V. K. et al. Dual-barcoded shotgun expression library sequencing for high-throughput characterization of functional traits in bacteria. Nat. Commun. 10, 308 (2019).
pubmed: 30659179 pmcid: 6338753 doi: 10.1038/s41467-018-08177-8
Liu, X. et al. Genome-wide CRISPRi screens reveal the essentialome and determinants for susceptibility to dalbavancin in Staphylococcus aureus. mSystems. 9, e01289–23 (2024).
pubmed: 38837392 pmcid: 11265419 doi: 10.1128/msystems.01289-23
Peters, J. M. et al. A comprehensive, CRISPR-based functional analysis of essential genes in bacteria. Cell 165, 1493–1506 (2016).
pubmed: 27238023 pmcid: 4894308 doi: 10.1016/j.cell.2016.05.003
Fang, X., Lloyd, C. J. & Palsson, B. O. Reconstructing organisms in silico: genome-scale models and their emerging applications. Nat. Rev. Microbiol. 18, 731–743 (2020).
pubmed: 32958892 pmcid: 7981288 doi: 10.1038/s41579-020-00440-4
Zengler, K. et al. EcoFABs: advancing microbiome science through standardized fabricated ecosystems. Nat. Methods 16, 567–571 (2019).
pubmed: 31227812 doi: 10.1038/s41592-019-0465-0
Novak, V. et al. Reproducible growth of Brachypodium distachyon in fabricated ecosystems (EcoFAB 2.0) reveals that nitrogen form and starvation modulate root exudation. Sci. Adv. 10, eadg7888 (2024).
pubmed: 38170767 doi: 10.1126/sciadv.adg7888
Sasse, J. et al. Multilab EcoFAB study shows highly reproducible physiology and depletion of soil metabolites by a model grass. N. Phytol. 222, 1149–1160 (2019).
doi: 10.1111/nph.15662
Yee, M. O. et al. Specialized plant growth chamber designs to study complex rhizosphere interactions. Front. Microbiol. 12, 625752 (2021).
pubmed: 33841353 doi: 10.3389/fmicb.2021.625752
Del Valle, I., Gao, X., Ghezzehei, T. A., Silberg, J. J. & Masiello, C. A. Artificial soils reveal individual factor controls on microbial processes. mSystems 7, e00301–e00322 (2022).
pubmed: 35880897
McLaughlin, S., Zhalnina, K., Kosina, S., Northen, T. R. & Sasse, J. The core metabolome and root exudation dynamics of three phylogenetically distinct plant species. Nat. Commun. 14, 1649 (2023).
pubmed: 36964135 pmcid: 10039077 doi: 10.1038/s41467-023-37164-x
Dar, D., Dar, N., Cai, L. & Newman, D. K. Spatial transcriptomics of planktonic and sessile bacterial populations at single-cell resolution. Science 373, eabi4882 (2021).
pubmed: 34385369 pmcid: 8454218 doi: 10.1126/science.abi4882
Wei, L. et al. Imaging complex protein metabolism in live organisms by stimulated Raman scattering microscopy with isotope labeling. ACS Chem. Biol. 10, 901–908 (2015).
pubmed: 25560305 pmcid: 4610303 doi: 10.1021/cb500787b
Hornby, D. Suppressive soils. Annu. Rev. Phytopathol. 21, 65–85 (1983).
doi: 10.1146/annurev.py.21.090183.000433
Mendes, R. et al. Deciphering the rhizosphere microbiome for disease-suppressive bacteria. Science 332, 1097–1100 (2011).
pubmed: 21551032 doi: 10.1126/science.1203980
Weller, D. M., Raaijmakers, J. M., Gardener, B. B. M. & Thomashow, L. S. Microbial populations responsible for specific soil suppressiveness to plant pathogens. Annu. Rev. Phytopathol. 40, 309–348 (2002).
pubmed: 12147763 doi: 10.1146/annurev.phyto.40.030402.110010
Delmotte, N. et al. Community proteogenomics reveals insights into the physiology of phyllosphere bacteria. Proc. Natl Acad. Sci. USA 106, 16428–16433 (2009).
pubmed: 19805315 doi: 10.1073/pnas.0905240106
Knief, C. et al. Metaproteogenomic analysis of microbial communities in the phyllosphere and rhizosphere of rice. ISME J. 6, 1378–1390 (2012).
pubmed: 22189496 doi: 10.1038/ismej.2011.192
Lundberg, D. S. et al. Defining the core Arabidopsis thaliana root microbiome. Nature 488, 86–90 (2012).
pubmed: 22859206 doi: 10.1038/nature11237
Bulgarelli, D. et al. Revealing structure and assembly cues for Arabidopsis root-inhabiting bacterial microbiota. Nature 488, 91–95 (2012).
pubmed: 22859207 doi: 10.1038/nature11336
Peiffer, J. A. et al. Diversity and heritability of the maize rhizosphere microbiome under field conditions. Proc. Natl Acad. Sci. USA 110, 6548–6553 (2013).
pubmed: 23576752 doi: 10.1073/pnas.1302837110
Horton, M. W. et al. Genome-wide association study of Arabidopsis thaliana leaf microbial community. Nat. Commun. 5, 5320 (2014).
pubmed: 25382143 doi: 10.1038/ncomms6320
Bodenhausen, N., Bortfeld-Miller, M., Ackermann, M. & Vorholt, J. A. A synthetic community approach reveals plant genotypes affecting the phyllosphere microbiota. PLoS Genet. 10, e1004283 (2014).
pubmed: 24743269 doi: 10.1371/journal.pgen.1004283
Bulgarelli, D., Schlaeppi, K., Spaepen, S., Van Themaat, E. V. L. & Schulze-Lefert, P. Structure and functions of the bacterial microbiota of plants. Annu. Rev. Plant Biol. 64, 807–838 (2013).
pubmed: 23373698 doi: 10.1146/annurev-arplant-050312-120106
Pérez-Jaramillo, J. E. et al. Deciphering rhizosphere microbiome assembly of wild and modern common bean (Phaseolus vulgaris) in native and agricultural soils from Colombia. Microbiome 7, 114 (2019).
pubmed: 31412927 doi: 10.1186/s40168-019-0727-1
Ji, N., Liang, D., Clark, L. V., Sacks, E. J. & Kent, A. D. Host genetic variation drives the differentiation in the ecological role of the native Miscanthus root-associated microbiome. Microbiome 11, 216 (2023).
pubmed: 37777794 pmcid: 10541700 doi: 10.1186/s40168-023-01646-3
He, X. et al. Heritable microbiome variation is correlated with source environment in locally adapted maize varieties. Nat. Plants 10, 598–617 (2024).
pubmed: 38514787 doi: 10.1038/s41477-024-01654-7
Lebeis, S. L. et al. Salicylic acid modulates colonization of the root microbiome by specific bacterial taxa. Science 349, 860–864 (2015).
pubmed: 26184915 doi: 10.1126/science.aaa8764
Agler, M. T. et al. Microbial hub taxa link host and abiotic factors to plant microbiome variation. PLoS Biol. 14, e1002352 (2016).
pubmed: 26788878 pmcid: 4720289 doi: 10.1371/journal.pbio.1002352
Liu, X. et al. Phyllosphere microbiome induces host metabolic defence against rice false-smut disease. Nat. Microbiol. 8, 1419–1433 (2023).
pubmed: 37142774 doi: 10.1038/s41564-023-01379-x
Zhou, X. et al. Cross-kingdom synthetic microbiota supports tomato suppression of Fusarium wilt disease. Nat. Commun. 13, 7890 (2022).
pubmed: 36550095 pmcid: 9780251 doi: 10.1038/s41467-022-35452-6
Chen, T. et al. A plant genetic network for preventing dysbiosis in the phyllosphere. Nature 580, 653–657 (2020).
pubmed: 32350464 pmcid: 7197412 doi: 10.1038/s41586-020-2185-0
Oyserman, B. O. et al. Disentangling the genetic basis of rhizosphere microbiome assembly in tomato. Nat. Commun. 13, 3228 (2022).
pubmed: 35710629 pmcid: 9203511 doi: 10.1038/s41467-022-30849-9
Su, P. et al. Microbiome homeostasis on rice leaves is regulated by a precursor molecule of lignin biosynthesis. Nat. Commun. 15, 23 (2024).
pubmed: 38167850 pmcid: 10762202 doi: 10.1038/s41467-023-44335-3
Castrillo, G. et al. Root microbiota drive direct integration of phosphate stress and immunity. Nature 543, 513–518 (2017).
pubmed: 28297714 pmcid: 5364063 doi: 10.1038/nature21417
Harbort, C. J. et al. Root-secreted coumarins and the microbiota interact to improve iron nutrition in Arabidopsis. Cell Host Microbe 28, 825–837.e6 (2020).
pubmed: 33027611 pmcid: 7738756 doi: 10.1016/j.chom.2020.09.006
Teixeira, P. J. P. L. et al. Specific modulation of the root immune system by a community of commensal bacteria. Proc. Natl Acad. Sci. USA 118, e2100678118 (2021).
pubmed: 33879573 pmcid: 8072228 doi: 10.1073/pnas.2100678118
Salas-González, I. et al. Coordination between microbiota and root endodermis supports plant mineral nutrient homeostasis. Science 371, eabd0695 (2021).
pubmed: 33214288 doi: 10.1126/science.abd0695
Xu, L. et al. Drought delays development of the sorghum root microbiome and enriches for monoderm bacteria. Proc. Natl Acad. Sci. USA 115, E4284–E4293 (2018).
pubmed: 29666229 pmcid: 5939072 doi: 10.1073/pnas.1717308115
Wang, M. et al. Dynamic root microbiome sustains soybean productivity under unbalanced fertilization. Nat. Commun. 15, 1668 (2024).
pubmed: 38395981 pmcid: 10891064 doi: 10.1038/s41467-024-45925-5
Fitzpatrick, C. R. et al. Assembly and ecological function of the root microbiome across angiosperm plant species. Proc. Natl Acad. Sci. USA 115, E1157–E1165 (2018).
pubmed: 29358405 pmcid: 5819437 doi: 10.1073/pnas.1717617115

Auteurs

Trent R Northen (TR)

Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA. TRNorthen@lbl.gov.
DOE Joint Genome Institute, Berkeley, CA, USA. TRNorthen@lbl.gov.

Manuel Kleiner (M)

Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, USA.

Marta Torres (M)

Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.

Ákos T Kovács (ÁT)

Institute of Biology, Leiden University, Leiden, The Netherlands.
DTU Bioengineering, Technical University of Denmark, Kongens Lyngby, Denmark.

Mette Haubjerg Nicolaisen (MH)

Department of Plant and Environmental Sciences, University of Copenhagen, Copenhagen, Denmark.

Dorota M Krzyżanowska (DM)

Intercollegiate Faculty of Biotechnology UG&MUG, University of Gdańsk, Gdańsk, Poland.

Shilpi Sharma (S)

Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi, India.

George Lund (G)

Sustainable Soils and Crops, Rothamsted Research, Harpenden, UK.

Lars Jelsbak (L)

DTU Bioengineering, Technical University of Denmark, Kongens Lyngby, Denmark.

Oliver Baars (O)

Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, USA.

Nikolaj Lunding Kindtler (NL)

Terrestrial Ecology Section, Department of Biology, University of Copenhagen, Copenhagen, Denmark.

Kathrin Wippel (K)

Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, Amsterdam, The Netherlands.

Caja Dinesen (C)

Institute of Biology, Leiden University, Leiden, The Netherlands.
DTU Bioengineering, Technical University of Denmark, Kongens Lyngby, Denmark.

Jessica A Ferrarezi (JA)

Department of Genetics, Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, Brazil.

Malek Marian (M)

Center for Agriculture Food Environment, University of Trento, San Michele all'Adige, Trento, Italy.

Adele Pioppi (A)

Institute of Biology, Leiden University, Leiden, The Netherlands.
DTU Bioengineering, Technical University of Denmark, Kongens Lyngby, Denmark.

Xinming Xu (X)

Institute of Biology, Leiden University, Leiden, The Netherlands.

Tonni Andersen (T)

Max Planck Institute for Plant Breeding Research, Cologne, Germany.
Cluster of Excellence on Plant Sciences (CEPLAS), Düsseldorf, Germany.

Niko Geldner (N)

Department of Plant Molecular Biology, University of Lausanne, Lausanne, Switzerland.

Paul Schulze-Lefert (P)

Max Planck Institute for Plant Breeding Research, Cologne, Germany.
Cluster of Excellence on Plant Sciences (CEPLAS), Düsseldorf, Germany.

Julia A Vorholt (JA)

Institute of Microbiology, ETH Zurich, Zurich, Switzerland.

Ruben Garrido-Oter (R)

Max Planck Institute for Plant Breeding Research, Cologne, Germany. garridoo@mpipz.mpg.de.
Cluster of Excellence on Plant Sciences (CEPLAS), Düsseldorf, Germany. garridoo@mpipz.mpg.de.
Earlham Institute, Norwich Research Park, Norwich, UK. garridoo@mpipz.mpg.de.

Articles similaires

Populus Soil Microbiology Soil Microbiota Fungi
Aerosols Humans Decontamination Air Microbiology Masks
Coal Metagenome Phylogeny Bacteria Genome, Bacterial
Semiconductors Photosynthesis Polymers Carbon Dioxide Bacteria

Classifications MeSH