Titre : Méthode en double aveugle

Méthode en double aveugle : Questions médicales fréquentes

Termes MeSH sélectionnés :

Single-Cell Gene Expression Analysis

Questions fréquentes et termes MeSH associés

Diagnostic 2

#1

Comment la méthode en double aveugle aide-t-elle au diagnostic ?

Elle permet d'évaluer l'efficacité d'un traitement sans biais d'observation.
Méthodes de recherche Biais Évaluation clinique
#2

Quels tests utilisent la méthode en double aveugle ?

Des essais cliniques pour tester des médicaments ou des interventions.
Essais cliniques Médicaments Interventions thérapeutiques

Symptômes 2

#1

Les symptômes sont-ils évalués en double aveugle ?

Oui, cela permet d'éviter que les attentes influencent les rapports de symptômes.
Symptômes Évaluation des symptômes Biais d'observation
#2

Comment les symptômes sont-ils mesurés en double aveugle ?

Par des échelles standardisées, sans que les évaluateurs sachent le traitement reçu.
Échelles d'évaluation Mesure des symptômes Évaluation clinique

Prévention 2

#1

La méthode en double aveugle est-elle utilisée en prévention ?

Oui, pour évaluer l'efficacité des vaccins ou des interventions préventives.
Prévention Vaccins Essais cliniques
#2

Comment la prévention est-elle testée en double aveugle ?

En comparant un groupe recevant le traitement préventif à un groupe placebo.
Interventions préventives Placebo Essais contrôlés

Traitements 2

#1

Quels traitements utilisent souvent la méthode en double aveugle ?

Les essais de nouveaux médicaments, thérapies ou interventions chirurgicales.
Traitements médicaux Essais cliniques Interventions chirurgicales
#2

Pourquoi utiliser la méthode en double aveugle pour les traitements ?

Pour garantir que les résultats ne soient pas influencés par des attentes ou des biais.
Biais Efficacité des traitements Essais contrôlés

Complications 2

#1

Les complications sont-elles prises en compte en double aveugle ?

Oui, pour évaluer les effets indésirables des traitements sans biais.
Complications Effets indésirables Évaluation clinique
#2

Comment les complications sont-elles rapportées ?

Par des rapports standardisés, sans que les évaluateurs sachent le traitement reçu.
Rapports d'effets indésirables Évaluation des complications Essais cliniques

Facteurs de risque 2

#1

La méthode en double aveugle évalue-t-elle les facteurs de risque ?

Indirectement, en contrôlant les variables pour isoler l'effet du traitement.
Facteurs de risque Contrôle des variables Essais cliniques
#2

Comment les facteurs de risque sont-ils pris en compte ?

En randomisant les participants pour équilibrer les caractéristiques entre groupes.
Randomisation Caractéristiques des participants Essais contrôlés
{ "@context": "https://schema.org", "@graph": [ { "@type": "MedicalWebPage", "name": "Méthode en double aveugle : Questions médicales les plus fréquentes", "headline": "Méthode en double aveugle : Comprendre les symptômes, diagnostics et traitements", "description": "Guide complet et accessible sur les Méthode en double aveugle : explications, diagnostics, traitements et prévention. Information médicale validée destinée aux patients.", "datePublished": "2024-04-13", "dateModified": "2025-04-08", "inLanguage": "fr", "medicalAudience": [ { "@type": "MedicalAudience", "name": "Grand public", "audienceType": "Patient", "healthCondition": { "@type": "MedicalCondition", "name": "Méthode en double aveugle" }, "suggestedMinAge": 18, "suggestedGender": "unisex" }, { "@type": "MedicalAudience", "name": "Médecins", "audienceType": "Physician", "geographicArea": { "@type": "AdministrativeArea", "name": "France" } }, { "@type": "MedicalAudience", "name": "Chercheurs", "audienceType": "Researcher", "geographicArea": { "@type": "AdministrativeArea", "name": "International" } } ], "reviewedBy": { "@type": "Person", "name": "Dr Olivier Menir", "jobTitle": "Expert en Médecine", "description": "Expert en Médecine, Optimisation des Parcours de Soins et Révision Médicale", "url": "/static/pages/docteur-olivier-menir.html", "alumniOf": { "@type": "EducationalOrganization", "name": "Université Paris Descartes" } }, "isPartOf": { "@type": "MedicalWebPage", "name": "Méthodologie en recherche épidémiologique", "url": "https://questionsmedicales.fr/mesh/D015340", "about": { "@type": "MedicalCondition", "name": "Méthodologie en recherche épidémiologique", "code": { "@type": "MedicalCode", "code": "D015340", "codingSystem": "MeSH" }, "identifier": { "@type": "PropertyValue", "propertyID": "MeSH Tree", "value": "N06.850.520.445" } } }, "about": { "@type": "MedicalCondition", "name": "Méthode en double aveugle", "alternateName": "Double-Blind Method", "code": { "@type": "MedicalCode", "code": "D004311", "codingSystem": "MeSH" } }, "author": [ { "@type": "Person", "name": "Hiroyoshi Yajima", "url": "https://questionsmedicales.fr/author/Hiroyoshi%20Yajima", "affiliation": { "@type": "Organization", "name": "" } }, { "@type": "Person", "name": "Miho Takayama", "url": "https://questionsmedicales.fr/author/Miho%20Takayama", "affiliation": { "@type": "Organization", "name": "" } }, { "@type": "Person", "name": "Judith M Schlaeger", "url": "https://questionsmedicales.fr/author/Judith%20M%20Schlaeger", "affiliation": { "@type": "Organization", "name": "" } }, { "@type": "Person", "name": "Nobuari Takakura", "url": "https://questionsmedicales.fr/author/Nobuari%20Takakura", "affiliation": { "@type": "Organization", "name": "" } }, { "@type": "Person", "name": "Ted J Kaptchuk", "url": "https://questionsmedicales.fr/author/Ted%20J%20Kaptchuk", "affiliation": { "@type": "Organization", "name": "Program in Placebo Studies, Beth Israel Deaconess Medical Center/Harvard Medical School, Boston, MA, USA." } } ], "citation": [ { "@type": "ScholarlyArticle", "name": "scMuffin: an R package to disentangle solid tumor heterogeneity by single-cell gene expression analysis.", "datePublished": "2023-11-27", "url": "https://questionsmedicales.fr/article/38012590", "identifier": { "@type": "PropertyValue", "propertyID": "DOI", "value": "10.1186/s12859-023-05563-y" } }, { "@type": "ScholarlyArticle", "name": "Robustness of single-cell RNA-seq for identifying differentially expressed genes.", "datePublished": "2023-07-03", "url": "https://questionsmedicales.fr/article/37394518", "identifier": { "@type": "PropertyValue", "propertyID": "DOI", "value": "10.1186/s12864-023-09487-y" } }, { "@type": "ScholarlyArticle", "name": "Protocols for single-cell RNA-seq and spatial gene expression integration and interactive visualization.", "datePublished": "2023-01-19", "url": "https://questionsmedicales.fr/article/36853708", "identifier": { "@type": "PropertyValue", "propertyID": "DOI", "value": "10.1016/j.xpro.2023.102047" } }, { "@type": "ScholarlyArticle", "name": "Feature selection followed by a novel residuals-based normalization that includes variance stabilization simplifies and improves single-cell gene expression analysis.", "datePublished": "2024-07-30", "url": "https://questionsmedicales.fr/article/39080559", "identifier": { "@type": "PropertyValue", "propertyID": "DOI", "value": "10.1186/s12859-024-05872-w" } }, { "@type": "ScholarlyArticle", "name": "Deconvolution from bulk gene expression by leveraging sample-wise and gene-wise similarities and single-cell RNA-Seq data.", "datePublished": "2024-09-18", "url": "https://questionsmedicales.fr/article/39294558", "identifier": { "@type": "PropertyValue", "propertyID": "DOI", "value": "10.1186/s12864-024-10728-x" } } ], "breadcrumb": { "@type": "BreadcrumbList", "itemListElement": [ { "@type": "ListItem", "position": 1, "name": "questionsmedicales.fr", "item": "https://questionsmedicales.fr" }, { "@type": "ListItem", "position": 2, "name": "Environnement et santé publique", "item": "https://questionsmedicales.fr/mesh/D004778" }, { "@type": "ListItem", "position": 3, "name": "Santé publique", "item": "https://questionsmedicales.fr/mesh/D011634" }, { "@type": "ListItem", "position": 4, "name": "Méthodes épidémiologiques", "item": "https://questionsmedicales.fr/mesh/D004812" }, { "@type": "ListItem", "position": 5, "name": "Méthodologie en recherche épidémiologique", "item": "https://questionsmedicales.fr/mesh/D015340" }, { "@type": "ListItem", "position": 6, "name": "Méthode en double aveugle", "item": "https://questionsmedicales.fr/mesh/D004311" } ] } }, { "@type": "MedicalWebPage", "name": "Article complet : Méthode en double aveugle - Questions et réponses", "headline": "Questions et réponses médicales fréquentes sur Méthode en double aveugle", "description": "Une compilation de questions et réponses structurées, validées par des experts médicaux.", "datePublished": "2025-05-06", "inLanguage": "fr", "hasPart": [ { "@type": "MedicalWebPage", "name": "Diagnostic", "headline": "Diagnostic sur Méthode en double aveugle", "description": "Comment la méthode en double aveugle aide-t-elle au diagnostic ?\nQuels tests utilisent la méthode en double aveugle ?", "url": "https://questionsmedicales.fr/mesh/D004311?mesh_terms=Single-Cell+Gene+Expression+Analysis#section-diagnostic" }, { "@type": "MedicalWebPage", "name": "Symptômes", "headline": "Symptômes sur Méthode en double aveugle", "description": "Les symptômes sont-ils évalués en double aveugle ?\nComment les symptômes sont-ils mesurés en double aveugle ?", "url": "https://questionsmedicales.fr/mesh/D004311?mesh_terms=Single-Cell+Gene+Expression+Analysis#section-symptômes" }, { "@type": "MedicalWebPage", "name": "Prévention", "headline": "Prévention sur Méthode en double aveugle", "description": "La méthode en double aveugle est-elle utilisée en prévention ?\nComment la prévention est-elle testée en double aveugle ?", "url": "https://questionsmedicales.fr/mesh/D004311?mesh_terms=Single-Cell+Gene+Expression+Analysis#section-prévention" }, { "@type": "MedicalWebPage", "name": "Traitements", "headline": "Traitements sur Méthode en double aveugle", "description": "Quels traitements utilisent souvent la méthode en double aveugle ?\nPourquoi utiliser la méthode en double aveugle pour les traitements ?", "url": "https://questionsmedicales.fr/mesh/D004311?mesh_terms=Single-Cell+Gene+Expression+Analysis#section-traitements" }, { "@type": "MedicalWebPage", "name": "Complications", "headline": "Complications sur Méthode en double aveugle", "description": "Les complications sont-elles prises en compte en double aveugle ?\nComment les complications sont-elles rapportées ?", "url": "https://questionsmedicales.fr/mesh/D004311?mesh_terms=Single-Cell+Gene+Expression+Analysis#section-complications" }, { "@type": "MedicalWebPage", "name": "Facteurs de risque", "headline": "Facteurs de risque sur Méthode en double aveugle", "description": "La méthode en double aveugle évalue-t-elle les facteurs de risque ?\nComment les facteurs de risque sont-ils pris en compte ?", "url": "https://questionsmedicales.fr/mesh/D004311?mesh_terms=Single-Cell+Gene+Expression+Analysis#section-facteurs de risque" } ] }, { "@type": "FAQPage", "mainEntity": [ { "@type": "Question", "name": "Comment la méthode en double aveugle aide-t-elle au diagnostic ?", "position": 1, "acceptedAnswer": { "@type": "Answer", "text": "Elle permet d'évaluer l'efficacité d'un traitement sans biais d'observation." } }, { "@type": "Question", "name": "Quels tests utilisent la méthode en double aveugle ?", "position": 2, "acceptedAnswer": { "@type": "Answer", "text": "Des essais cliniques pour tester des médicaments ou des interventions." } }, { "@type": "Question", "name": "Les symptômes sont-ils évalués en double aveugle ?", "position": 3, "acceptedAnswer": { "@type": "Answer", "text": "Oui, cela permet d'éviter que les attentes influencent les rapports de symptômes." } }, { "@type": "Question", "name": "Comment les symptômes sont-ils mesurés en double aveugle ?", "position": 4, "acceptedAnswer": { "@type": "Answer", "text": "Par des échelles standardisées, sans que les évaluateurs sachent le traitement reçu." } }, { "@type": "Question", "name": "La méthode en double aveugle est-elle utilisée en prévention ?", "position": 5, "acceptedAnswer": { "@type": "Answer", "text": "Oui, pour évaluer l'efficacité des vaccins ou des interventions préventives." } }, { "@type": "Question", "name": "Comment la prévention est-elle testée en double aveugle ?", "position": 6, "acceptedAnswer": { "@type": "Answer", "text": "En comparant un groupe recevant le traitement préventif à un groupe placebo." } }, { "@type": "Question", "name": "Quels traitements utilisent souvent la méthode en double aveugle ?", "position": 7, "acceptedAnswer": { "@type": "Answer", "text": "Les essais de nouveaux médicaments, thérapies ou interventions chirurgicales." } }, { "@type": "Question", "name": "Pourquoi utiliser la méthode en double aveugle pour les traitements ?", "position": 8, "acceptedAnswer": { "@type": "Answer", "text": "Pour garantir que les résultats ne soient pas influencés par des attentes ou des biais." } }, { "@type": "Question", "name": "Les complications sont-elles prises en compte en double aveugle ?", "position": 9, "acceptedAnswer": { "@type": "Answer", "text": "Oui, pour évaluer les effets indésirables des traitements sans biais." } }, { "@type": "Question", "name": "Comment les complications sont-elles rapportées ?", "position": 10, "acceptedAnswer": { "@type": "Answer", "text": "Par des rapports standardisés, sans que les évaluateurs sachent le traitement reçu." } }, { "@type": "Question", "name": "La méthode en double aveugle évalue-t-elle les facteurs de risque ?", "position": 11, "acceptedAnswer": { "@type": "Answer", "text": "Indirectement, en contrôlant les variables pour isoler l'effet du traitement." } }, { "@type": "Question", "name": "Comment les facteurs de risque sont-ils pris en compte ?", "position": 12, "acceptedAnswer": { "@type": "Answer", "text": "En randomisant les participants pour équilibrer les caractéristiques entre groupes." } } ] } ] }
Dr Olivier Menir

Contenu validé par Dr Olivier Menir

Expert en Médecine, Optimisation des Parcours de Soins et Révision Médicale


Validation scientifique effectuée le 08/04/2025

Contenu vérifié selon les dernières recommandations médicales

Auteurs principaux

Hiroyoshi Yajima

2 publications dans cette catégorie

Publications dans "Méthode en double aveugle" :

Miho Takayama

2 publications dans cette catégorie

Publications dans "Méthode en double aveugle" :

Judith M Schlaeger

2 publications dans cette catégorie

Publications dans "Méthode en double aveugle" :

Nobuari Takakura

2 publications dans cette catégorie

Publications dans "Méthode en double aveugle" :

Ted J Kaptchuk

2 publications dans cette catégorie

Affiliations :
  • Program in Placebo Studies, Beth Israel Deaconess Medical Center/Harvard Medical School, Boston, MA, USA.
  • Department of Global Health and Social Medicine, Harvard Medical School, Boston, MA, USA.
Publications dans "Méthode en double aveugle" :

Booil Jo

2 publications dans cette catégorie

Affiliations :
  • Department of Psychiatry and Behavioral Science, Stanford University, Stanford, CA, USA.
Publications dans "Méthode en double aveugle" :

Cody A Cushing

2 publications dans cette catégorie

Publications dans "Méthode en double aveugle" :

Hakwan Lau

2 publications dans cette catégorie

Publications dans "Méthode en double aveugle" :

Mitsuo Kawato

2 publications dans cette catégorie

Publications dans "Méthode en double aveugle" :

Michelle G Craske

2 publications dans cette catégorie

Publications dans "Méthode en double aveugle" :

Vincent Taschereau-Dumouchel

2 publications dans cette catégorie

Publications dans "Méthode en double aveugle" :

Guus A M Kortman

2 publications dans cette catégorie

Affiliations :
  • NIZO Food Research B.V., 6718 ZB Ede, The Netherlands.

Maartje van den Belt

2 publications dans cette catégorie

Affiliations :
  • NIZO Food Research B.V., 6718 ZB Ede, The Netherlands.

Xuan Zhang

2 publications dans cette catégorie

Affiliations :
  • Chinese EQUATOR Centre, Hong Kong Chinese Medicine Clinical Study Centre, Chinese Clinical Trial Registry (Hong Kong), School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong, People's Republic of China.

Yernar Dauletovich Mamyrov

1 publication dans cette catégorie

Affiliations :
  • Department of Emergency Medicine, Pavlodar Branch of NCJSC Semey Medical University, Pavlodar, Kazakhstan.
Publications dans "Méthode en double aveugle" :

Daulet Urazovich Mamyrov

1 publication dans cette catégorie

Affiliations :
  • Department of Emergency Medicine, Pavlodar Branch of NCJSC Semey Medical University, Pavlodar, Kazakhstan.
Publications dans "Méthode en double aveugle" :

Gulzhanat Ertaevna Jakova

1 publication dans cette catégorie

Affiliations :
  • Department of Surgery, Pavlodar Branch of NCJSC Semey Medical University, Pavlodar, Kazakhstan.
Publications dans "Méthode en double aveugle" :

Yoshihiro Noso

1 publication dans cette catégorie

Affiliations :
  • Department of Health Services Management, Hiroshima International University, Hiroshima, Japan.
Publications dans "Méthode en double aveugle" :

Marat Kelisovich Syzdykbayev

1 publication dans cette catégorie

Affiliations :
  • Department of Surgery, Anesthesiology and Reanimatology, Semey Medical University, Semey, Kazakhstan.
Publications dans "Méthode en double aveugle" :

Tony Bazi

1 publication dans cette catégorie

Affiliations :
  • American University of Beirut, Beirut, Lebanon. tb14@aub.edu.lb.
Publications dans "Méthode en double aveugle" :

Sources (10000 au total)

scMuffin: an R package to disentangle solid tumor heterogeneity by single-cell gene expression analysis.

Single-cell (SC) gene expression analysis is crucial to dissect the complex cellular heterogeneity of solid tumors, which is one of the main obstacles for the development of effective cancer treatment... scMuffin provides a series of functions to calculate qualitative and quantitative scores, such as: expression of marker sets for normal and tumor conditions, pathway activity, cell state trajectories,... The analyses offered by scMuffin and the results achieved in the case study show that our tool helps addressing the main challenges in the bioinformatics analysis of SC expression data from solid tumo...

Robustness of single-cell RNA-seq for identifying differentially expressed genes.

A common feature of single-cell RNA-seq (scRNA-seq) data is that the number of cells in a cell cluster may vary widely, ranging from a few dozen to several thousand. It is not clear whether scRNA-seq ... We addressed this question by performing scRNA-seq and poly(A)-dependent bulk RNA-seq in comparable aliquots of human induced pluripotent stem cells-derived, purified vascular endothelial and smooth m... Findings of the current study provide a quantitative reference for designing studies that aim for identifying DEGs for specific cell clusters using scRNA-seq data and for interpreting results of such ...

Feature selection followed by a novel residuals-based normalization that includes variance stabilization simplifies and improves single-cell gene expression analysis.

Normalization is a crucial step in the analysis of single-cell RNA-sequencing (scRNA-seq) counts data. Its principal objectives are reduction of systematic biases primarily introduced through technica...

Deconvolution from bulk gene expression by leveraging sample-wise and gene-wise similarities and single-cell RNA-Seq data.

The widely adopted bulk RNA-seq measures the gene expression average of cells, masking cell type heterogeneity, which confounds downstream analyses. Therefore, identifying the cellular composition and... We propose a new deconvolution algorithm, DSSC, which infers cell type-specific gene expression and cell type proportions of heterogeneous samples simultaneously by leveraging gene-gene and sample-sam... DSSC provides a practical and promising alternative to the experimental techniques to characterize cellular composition and heterogeneity in the gene expression of heterogeneous samples....

scMEB: a fast and clustering-independent method for detecting differentially expressed genes in single-cell RNA-seq data.

Cell clustering is a prerequisite for identifying differentially expressed genes (DEGs) in single-cell RNA sequencing (scRNA-seq) data. Obtaining a perfect clustering result is of central importance f... Here, we propose single-cell minimum enclosing ball (scMEB), a novel and fast method for detecting single-cell DEGs without prior cell clustering results. The proposed method utilizes a small part of ... We compared scMEB to two different approaches that could be used to identify DEGs without cell clustering. The investigation of 11 real datasets revealed that scMEB outperformed rival methods in terms...

Single-cell transcriptome analysis reveals the key genes associated with macrophage polarization in liver cancer.

The aim of this study was to reveal the key genes associated with macrophage polarization in liver cancer.... Data were downloaded from the Gene Expression Omnibus (GEO) and the Cancer Genome Atlas databases (TCGA). R package Seurat 4.0 was used to preprocess the downloaded single-cell sequencing data, princi... Two thousand highly variable genes were obtained after the normalization of single-cell profiles. In all, 16 principal components and 15 cell clusters were obtained. Monocytes and macrophages were the... The key genes associated with macrophage polarization, namely CD53, TGFBI, S100A4, pyruvate kinase M, LSP1, and SPP1, may be potential therapeutic targets for liver cancer....

Single-cell transcriptome analysis profiles the expression features of TMEM173 in BM cells of high-risk B-cell acute lymphoblastic leukemia.

As an essential regulator of type I interferon (IFN) response, TMEM173 participates in immune regulation and cell death induction. In recent studies, activation of TMEM173 has been regarded as a promi... Quantitative real-time PCR (qRT-PCR) and western blotting (WB) were applied to determine the mRNA and protein levels of TMEM173 in peripheral blood mononuclear cells (PBMCs). TMEM173 mutation status w... The mRNA and protein levels of TMEM173 were increased in PBMCs from B-ALL patients. Besides, frameshift mutation was presented in TMEM173 sequences of 2 B-ALL patients. ScRNA-seq analysis identified t... Our findings provide insights into the transcriptomic features of TMEM173 in the BM of high-risk B-ALL patients. Targeted activation of TMEM173 in specific cells might provide new therapeutic strategi...

Integrated analysis of single-cell RNA-seq and chipset data unravels PANoptosis-related genes in sepsis.

The poor prognosis of sepsis warrants the investigation of biomarkers for predicting the outcome. Several studies have indicated that PANoptosis exerts a critical role in tumor initiation and developm... We obtained Sepsis samples and scRNA-seq data from the GEO database. PANoptosis-related genes were subjected to consensus clustering and functional enrichment analysis, followed by identification of d... Unsupervised clustering analysis using 16 PANoptosis-related genes identified three subtypes of sepsis. Kaplan-Meier analysis showed significant differences in patient survival among the subtypes, wit... We developed a machine learning based Boruta algorithm for profiling PANoptosis related subgroups with in predicting survival and clinical features in the sepsis....

Integrating the characteristic genes of macrophage pseudotime analysis in single-cell RNA-seq to construct a prediction model of atherosclerosis.

Macrophages play an important role in the occurrence and development of atherosclerosis. However, few existing studies have deliberately analyzed the changes in characteristic genes in the process of ... Carotid atherosclerotic plaque single-cell RNA (scRNA) sequencing data were analyzed to define the cells involved and determine their transcriptomic characteristics. KEGG enrichment analysis, CIBERSOR... Nine cell clusters were identified. M1 macrophages, M2 macrophages, and M2/M1 macrophages were identified as three clusters within the macrophages. According to pseudotime analysis, M2/M1 macrophages ... IL1RN...