On vérifie si les événements sont rares et indépendants, et on utilise des tests statistiques.
Distribution de PoissonStatistiques
#2
Quels outils statistiques sont utilisés ?
Les tests de chi carré et les tests de Poisson sont couramment utilisés pour l'analyse.
Tests statistiquesAnalyse de données
#3
Quand utiliser la loi de Poisson ?
Elle est utilisée pour modéliser des événements rares comme les accidents ou les maladies.
Événements raresModélisation statistique
#4
Quels sont les critères d'application ?
Les événements doivent être indépendants et se produire à un taux constant dans le temps.
IndépendanceTaux d'événements
#5
Comment vérifier l'adéquation du modèle ?
On compare les données observées avec les données attendues par le modèle de Poisson.
Modèle statistiqueAnalyse de variance
Symptômes
5
#1
Quels symptômes modélise-t-on avec la loi de Poisson ?
On modélise des événements comme des cas de maladies ou des accidents dans un intervalle donné.
SymptômesÉvénements de santé
#2
La loi de Poisson peut-elle prédire des épidémies ?
Oui, elle peut estimer le nombre de cas d'une maladie dans un temps donné, comme une épidémie.
ÉpidémiesPrévision
#3
Quels événements sont souvent analysés ?
Les événements comme les admissions à l'hôpital ou les infections nosocomiales sont analysés.
Admissions hospitalièresInfections nosocomiales
#4
Peut-on modéliser des décès avec cette loi ?
Oui, la loi de Poisson est utilisée pour modéliser le nombre de décès dans une population sur une période.
DécèsDémographie
#5
Quels types de maladies sont concernés ?
Des maladies infectieuses, des accidents et des maladies chroniques peuvent être modélisées.
Maladies infectieusesAccidents
Prévention
5
#1
Comment la loi de Poisson aide-t-elle à la prévention ?
Elle permet d'estimer le risque d'événements indésirables et d'orienter les stratégies de prévention.
PréventionRisque
#2
Peut-on prédire des épidémies avec cette loi ?
Oui, elle aide à prédire le nombre de cas d'épidémies et à planifier des interventions préventives.
Prédiction d'épidémiesInterventions préventives
#3
Quels événements préventifs sont modélisés ?
On modélise des événements comme les vaccinations et les campagnes de sensibilisation.
VaccinationSensibilisation
#4
Comment évaluer l'impact des campagnes ?
On utilise la loi de Poisson pour analyser le nombre de cas avant et après les campagnes de prévention.
Impact des campagnesAnalyse comparative
#5
Quels facteurs influencent la prévention ?
Les facteurs comme le taux de vaccination et l'accès aux soins influencent les résultats préventifs.
Taux de vaccinationAccès aux soins
Traitements
5
#1
Comment la loi de Poisson aide-t-elle en traitement ?
Elle permet d'évaluer l'efficacité des traitements en analysant le nombre d'événements indésirables.
Efficacité des traitementsÉvénements indésirables
#2
Peut-on ajuster les traitements avec cette loi ?
Oui, les données de Poisson aident à ajuster les traitements en fonction des résultats observés.
Ajustement thérapeutiqueRésultats cliniques
#3
Comment évaluer les effets secondaires ?
On utilise la loi de Poisson pour modéliser le nombre d'effets secondaires dans des essais cliniques.
Effets secondairesEssais cliniques
#4
La loi de Poisson influence-t-elle la recherche ?
Oui, elle guide la recherche sur l'impact des traitements en analysant les événements rares.
Recherche médicaleImpact des traitements
#5
Quels traitements sont souvent analysés ?
Les traitements pour les maladies infectieuses et les interventions chirurgicales sont souvent analysés.
Maladies infectieusesInterventions chirurgicales
Complications
5
#1
Quelles complications peuvent être modélisées ?
On peut modéliser des complications comme les infections post-opératoires ou les effets secondaires.
ComplicationsInfections post-opératoires
#2
Comment la loi de Poisson aide-t-elle à comprendre les complications ?
Elle permet d'analyser la fréquence des complications et d'identifier des facteurs de risque.
Analyse de fréquenceFacteurs de risque
#3
Peut-on prédire des complications avec cette loi ?
Oui, elle aide à prédire le nombre de complications dans des populations spécifiques après un traitement.
PrédictionPopulation spécifique
#4
Quels types de complications sont souvent étudiés ?
Les complications chirurgicales et les effets indésirables des médicaments sont souvent étudiés.
Complications chirurgicalesEffets indésirables
#5
Comment réduire les complications ?
On utilise les données de Poisson pour identifier les risques et améliorer les protocoles de soins.
Réduction des risquesProtocoles de soins
Facteurs de risque
5
#1
Quels facteurs influencent la loi de Poisson ?
Les facteurs comme l'âge, le sexe et les antécédents médicaux influencent les événements modélisés.
Facteurs de risqueAntécédents médicaux
#2
Comment identifier les facteurs de risque ?
On analyse les données épidémiologiques pour identifier les facteurs associés à des événements rares.
ÉpidémiologieAnalyse de données
#3
Les comportements influencent-ils les résultats ?
Oui, des comportements comme le tabagisme ou l'alimentation peuvent augmenter les risques d'événements.
Comportements de santéTabagisme
#4
Quels facteurs environnementaux sont considérés ?
Des facteurs comme la pollution et l'accès aux soins de santé sont pris en compte dans l'analyse.
PollutionAccès aux soins
#5
Comment les facteurs de risque sont-ils utilisés ?
Ils sont utilisés pour orienter les politiques de santé publique et les stratégies de prévention.
Politiques de santéStratégies de prévention
{
"@context": "https://schema.org",
"@graph": [
{
"@type": "MedicalWebPage",
"name": "Loi de Poisson : Questions médicales les plus fréquentes",
"headline": "Loi de Poisson : Comprendre les symptômes, diagnostics et traitements",
"description": "Guide complet et accessible sur les Loi de Poisson : explications, diagnostics, traitements et prévention. Information médicale validée destinée aux patients.",
"datePublished": "2024-04-05",
"dateModified": "2025-03-31",
"inLanguage": "fr",
"medicalAudience": [
{
"@type": "MedicalAudience",
"name": "Grand public",
"audienceType": "Patient",
"healthCondition": {
"@type": "MedicalCondition",
"name": "Loi de Poisson"
},
"suggestedMinAge": 18,
"suggestedGender": "unisex"
},
{
"@type": "MedicalAudience",
"name": "Médecins",
"audienceType": "Physician",
"geographicArea": {
"@type": "AdministrativeArea",
"name": "France"
}
},
{
"@type": "MedicalAudience",
"name": "Chercheurs",
"audienceType": "Researcher",
"geographicArea": {
"@type": "AdministrativeArea",
"name": "International"
}
}
],
"reviewedBy": {
"@type": "Person",
"name": "Dr Olivier Menir",
"jobTitle": "Expert en Médecine",
"description": "Expert en Médecine, Optimisation des Parcours de Soins et Révision Médicale",
"url": "/static/pages/docteur-olivier-menir.html",
"alumniOf": {
"@type": "EducationalOrganization",
"name": "Université Paris Descartes"
}
},
"isPartOf": {
"@type": "MedicalWebPage",
"name": "Lois statistiques",
"url": "https://questionsmedicales.fr/mesh/D016008",
"about": {
"@type": "MedicalCondition",
"name": "Lois statistiques",
"code": {
"@type": "MedicalCode",
"code": "D016008",
"codingSystem": "MeSH"
},
"identifier": {
"@type": "PropertyValue",
"propertyID": "MeSH Tree",
"value": "N06.850.520.830.994"
}
}
},
"about": {
"@type": "MedicalCondition",
"name": "Loi de Poisson",
"alternateName": "Poisson Distribution",
"code": {
"@type": "MedicalCode",
"code": "D016012",
"codingSystem": "MeSH"
}
},
"author": [
{
"@type": "Person",
"name": "Cécile Kremer",
"url": "https://questionsmedicales.fr/author/C%C3%A9cile%20Kremer",
"affiliation": {
"@type": "Organization",
"name": ""
}
},
{
"@type": "Person",
"name": "Andrea Torneri",
"url": "https://questionsmedicales.fr/author/Andrea%20Torneri",
"affiliation": {
"@type": "Organization",
"name": ""
}
},
{
"@type": "Person",
"name": "Sien Boesmans",
"url": "https://questionsmedicales.fr/author/Sien%20Boesmans",
"affiliation": {
"@type": "Organization",
"name": ""
}
},
{
"@type": "Person",
"name": "Hanne Meuwissen",
"url": "https://questionsmedicales.fr/author/Hanne%20Meuwissen",
"affiliation": {
"@type": "Organization",
"name": ""
}
},
{
"@type": "Person",
"name": "Selina Verdonschot",
"url": "https://questionsmedicales.fr/author/Selina%20Verdonschot",
"affiliation": {
"@type": "Organization",
"name": ""
}
}
],
"citation": [
{
"@type": "ScholarlyArticle",
"name": "Semantic units: organizing knowledge graphs into semantically meaningful units of representation.",
"datePublished": "2024-05-27",
"url": "https://questionsmedicales.fr/article/38802877",
"identifier": {
"@type": "PropertyValue",
"propertyID": "DOI",
"value": "10.1186/s13326-024-00310-5"
}
},
{
"@type": "ScholarlyArticle",
"name": "Age differences in the neural processing of semantics, within and beyond the core semantic network.",
"datePublished": "2023-07-25",
"url": "https://questionsmedicales.fr/article/37603932",
"identifier": {
"@type": "PropertyValue",
"propertyID": "DOI",
"value": "10.1016/j.neurobiolaging.2023.07.022"
}
},
{
"@type": "ScholarlyArticle",
"name": "Longitudinal decline in semantic",
"datePublished": "2023-01-13",
"url": "https://questionsmedicales.fr/article/36637058",
"identifier": {
"@type": "PropertyValue",
"propertyID": "DOI",
"value": "10.1017/S1355617722000856"
}
},
{
"@type": "ScholarlyArticle",
"name": "On the semantics of ecoacoustic codes.",
"datePublished": "2023-08-23",
"url": "https://questionsmedicales.fr/article/37625513",
"identifier": {
"@type": "PropertyValue",
"propertyID": "DOI",
"value": "10.1016/j.biosystems.2023.105002"
}
},
{
"@type": "ScholarlyArticle",
"name": "The shared and unique neural correlates of personal semantic, general semantic, and episodic memory.",
"datePublished": "2023-11-21",
"url": "https://questionsmedicales.fr/article/37987578",
"identifier": {
"@type": "PropertyValue",
"propertyID": "DOI",
"value": "10.7554/eLife.83645"
}
}
],
"breadcrumb": {
"@type": "BreadcrumbList",
"itemListElement": [
{
"@type": "ListItem",
"position": 1,
"name": "questionsmedicales.fr",
"item": "https://questionsmedicales.fr"
},
{
"@type": "ListItem",
"position": 2,
"name": "Environnement et santé publique",
"item": "https://questionsmedicales.fr/mesh/D004778"
},
{
"@type": "ListItem",
"position": 3,
"name": "Santé publique",
"item": "https://questionsmedicales.fr/mesh/D011634"
},
{
"@type": "ListItem",
"position": 4,
"name": "Méthodes épidémiologiques",
"item": "https://questionsmedicales.fr/mesh/D004812"
},
{
"@type": "ListItem",
"position": 5,
"name": "Statistiques comme sujet",
"item": "https://questionsmedicales.fr/mesh/D013223"
},
{
"@type": "ListItem",
"position": 6,
"name": "Lois statistiques",
"item": "https://questionsmedicales.fr/mesh/D016008"
},
{
"@type": "ListItem",
"position": 7,
"name": "Loi de Poisson",
"item": "https://questionsmedicales.fr/mesh/D016012"
}
]
}
},
{
"@type": "MedicalWebPage",
"name": "Article complet : Loi de Poisson - Questions et réponses",
"headline": "Questions et réponses médicales fréquentes sur Loi de Poisson",
"description": "Une compilation de questions et réponses structurées, validées par des experts médicaux.",
"datePublished": "2025-05-02",
"inLanguage": "fr",
"hasPart": [
{
"@type": "MedicalWebPage",
"name": "Diagnostic",
"headline": "Diagnostic sur Loi de Poisson",
"description": "Comment identifier une distribution de Poisson ?\nQuels outils statistiques sont utilisés ?\nQuand utiliser la loi de Poisson ?\nQuels sont les critères d'application ?\nComment vérifier l'adéquation du modèle ?",
"url": "https://questionsmedicales.fr/mesh/D016012?mesh_terms=Semantics#section-diagnostic"
},
{
"@type": "MedicalWebPage",
"name": "Symptômes",
"headline": "Symptômes sur Loi de Poisson",
"description": "Quels symptômes modélise-t-on avec la loi de Poisson ?\nLa loi de Poisson peut-elle prédire des épidémies ?\nQuels événements sont souvent analysés ?\nPeut-on modéliser des décès avec cette loi ?\nQuels types de maladies sont concernés ?",
"url": "https://questionsmedicales.fr/mesh/D016012?mesh_terms=Semantics#section-symptômes"
},
{
"@type": "MedicalWebPage",
"name": "Prévention",
"headline": "Prévention sur Loi de Poisson",
"description": "Comment la loi de Poisson aide-t-elle à la prévention ?\nPeut-on prédire des épidémies avec cette loi ?\nQuels événements préventifs sont modélisés ?\nComment évaluer l'impact des campagnes ?\nQuels facteurs influencent la prévention ?",
"url": "https://questionsmedicales.fr/mesh/D016012?mesh_terms=Semantics#section-prévention"
},
{
"@type": "MedicalWebPage",
"name": "Traitements",
"headline": "Traitements sur Loi de Poisson",
"description": "Comment la loi de Poisson aide-t-elle en traitement ?\nPeut-on ajuster les traitements avec cette loi ?\nComment évaluer les effets secondaires ?\nLa loi de Poisson influence-t-elle la recherche ?\nQuels traitements sont souvent analysés ?",
"url": "https://questionsmedicales.fr/mesh/D016012?mesh_terms=Semantics#section-traitements"
},
{
"@type": "MedicalWebPage",
"name": "Complications",
"headline": "Complications sur Loi de Poisson",
"description": "Quelles complications peuvent être modélisées ?\nComment la loi de Poisson aide-t-elle à comprendre les complications ?\nPeut-on prédire des complications avec cette loi ?\nQuels types de complications sont souvent étudiés ?\nComment réduire les complications ?",
"url": "https://questionsmedicales.fr/mesh/D016012?mesh_terms=Semantics#section-complications"
},
{
"@type": "MedicalWebPage",
"name": "Facteurs de risque",
"headline": "Facteurs de risque sur Loi de Poisson",
"description": "Quels facteurs influencent la loi de Poisson ?\nComment identifier les facteurs de risque ?\nLes comportements influencent-ils les résultats ?\nQuels facteurs environnementaux sont considérés ?\nComment les facteurs de risque sont-ils utilisés ?",
"url": "https://questionsmedicales.fr/mesh/D016012?mesh_terms=Semantics#section-facteurs de risque"
}
]
},
{
"@type": "FAQPage",
"mainEntity": [
{
"@type": "Question",
"name": "Comment identifier une distribution de Poisson ?",
"position": 1,
"acceptedAnswer": {
"@type": "Answer",
"text": "On vérifie si les événements sont rares et indépendants, et on utilise des tests statistiques."
}
},
{
"@type": "Question",
"name": "Quels outils statistiques sont utilisés ?",
"position": 2,
"acceptedAnswer": {
"@type": "Answer",
"text": "Les tests de chi carré et les tests de Poisson sont couramment utilisés pour l'analyse."
}
},
{
"@type": "Question",
"name": "Quand utiliser la loi de Poisson ?",
"position": 3,
"acceptedAnswer": {
"@type": "Answer",
"text": "Elle est utilisée pour modéliser des événements rares comme les accidents ou les maladies."
}
},
{
"@type": "Question",
"name": "Quels sont les critères d'application ?",
"position": 4,
"acceptedAnswer": {
"@type": "Answer",
"text": "Les événements doivent être indépendants et se produire à un taux constant dans le temps."
}
},
{
"@type": "Question",
"name": "Comment vérifier l'adéquation du modèle ?",
"position": 5,
"acceptedAnswer": {
"@type": "Answer",
"text": "On compare les données observées avec les données attendues par le modèle de Poisson."
}
},
{
"@type": "Question",
"name": "Quels symptômes modélise-t-on avec la loi de Poisson ?",
"position": 6,
"acceptedAnswer": {
"@type": "Answer",
"text": "On modélise des événements comme des cas de maladies ou des accidents dans un intervalle donné."
}
},
{
"@type": "Question",
"name": "La loi de Poisson peut-elle prédire des épidémies ?",
"position": 7,
"acceptedAnswer": {
"@type": "Answer",
"text": "Oui, elle peut estimer le nombre de cas d'une maladie dans un temps donné, comme une épidémie."
}
},
{
"@type": "Question",
"name": "Quels événements sont souvent analysés ?",
"position": 8,
"acceptedAnswer": {
"@type": "Answer",
"text": "Les événements comme les admissions à l'hôpital ou les infections nosocomiales sont analysés."
}
},
{
"@type": "Question",
"name": "Peut-on modéliser des décès avec cette loi ?",
"position": 9,
"acceptedAnswer": {
"@type": "Answer",
"text": "Oui, la loi de Poisson est utilisée pour modéliser le nombre de décès dans une population sur une période."
}
},
{
"@type": "Question",
"name": "Quels types de maladies sont concernés ?",
"position": 10,
"acceptedAnswer": {
"@type": "Answer",
"text": "Des maladies infectieuses, des accidents et des maladies chroniques peuvent être modélisées."
}
},
{
"@type": "Question",
"name": "Comment la loi de Poisson aide-t-elle à la prévention ?",
"position": 11,
"acceptedAnswer": {
"@type": "Answer",
"text": "Elle permet d'estimer le risque d'événements indésirables et d'orienter les stratégies de prévention."
}
},
{
"@type": "Question",
"name": "Peut-on prédire des épidémies avec cette loi ?",
"position": 12,
"acceptedAnswer": {
"@type": "Answer",
"text": "Oui, elle aide à prédire le nombre de cas d'épidémies et à planifier des interventions préventives."
}
},
{
"@type": "Question",
"name": "Quels événements préventifs sont modélisés ?",
"position": 13,
"acceptedAnswer": {
"@type": "Answer",
"text": "On modélise des événements comme les vaccinations et les campagnes de sensibilisation."
}
},
{
"@type": "Question",
"name": "Comment évaluer l'impact des campagnes ?",
"position": 14,
"acceptedAnswer": {
"@type": "Answer",
"text": "On utilise la loi de Poisson pour analyser le nombre de cas avant et après les campagnes de prévention."
}
},
{
"@type": "Question",
"name": "Quels facteurs influencent la prévention ?",
"position": 15,
"acceptedAnswer": {
"@type": "Answer",
"text": "Les facteurs comme le taux de vaccination et l'accès aux soins influencent les résultats préventifs."
}
},
{
"@type": "Question",
"name": "Comment la loi de Poisson aide-t-elle en traitement ?",
"position": 16,
"acceptedAnswer": {
"@type": "Answer",
"text": "Elle permet d'évaluer l'efficacité des traitements en analysant le nombre d'événements indésirables."
}
},
{
"@type": "Question",
"name": "Peut-on ajuster les traitements avec cette loi ?",
"position": 17,
"acceptedAnswer": {
"@type": "Answer",
"text": "Oui, les données de Poisson aident à ajuster les traitements en fonction des résultats observés."
}
},
{
"@type": "Question",
"name": "Comment évaluer les effets secondaires ?",
"position": 18,
"acceptedAnswer": {
"@type": "Answer",
"text": "On utilise la loi de Poisson pour modéliser le nombre d'effets secondaires dans des essais cliniques."
}
},
{
"@type": "Question",
"name": "La loi de Poisson influence-t-elle la recherche ?",
"position": 19,
"acceptedAnswer": {
"@type": "Answer",
"text": "Oui, elle guide la recherche sur l'impact des traitements en analysant les événements rares."
}
},
{
"@type": "Question",
"name": "Quels traitements sont souvent analysés ?",
"position": 20,
"acceptedAnswer": {
"@type": "Answer",
"text": "Les traitements pour les maladies infectieuses et les interventions chirurgicales sont souvent analysés."
}
},
{
"@type": "Question",
"name": "Quelles complications peuvent être modélisées ?",
"position": 21,
"acceptedAnswer": {
"@type": "Answer",
"text": "On peut modéliser des complications comme les infections post-opératoires ou les effets secondaires."
}
},
{
"@type": "Question",
"name": "Comment la loi de Poisson aide-t-elle à comprendre les complications ?",
"position": 22,
"acceptedAnswer": {
"@type": "Answer",
"text": "Elle permet d'analyser la fréquence des complications et d'identifier des facteurs de risque."
}
},
{
"@type": "Question",
"name": "Peut-on prédire des complications avec cette loi ?",
"position": 23,
"acceptedAnswer": {
"@type": "Answer",
"text": "Oui, elle aide à prédire le nombre de complications dans des populations spécifiques après un traitement."
}
},
{
"@type": "Question",
"name": "Quels types de complications sont souvent étudiés ?",
"position": 24,
"acceptedAnswer": {
"@type": "Answer",
"text": "Les complications chirurgicales et les effets indésirables des médicaments sont souvent étudiés."
}
},
{
"@type": "Question",
"name": "Comment réduire les complications ?",
"position": 25,
"acceptedAnswer": {
"@type": "Answer",
"text": "On utilise les données de Poisson pour identifier les risques et améliorer les protocoles de soins."
}
},
{
"@type": "Question",
"name": "Quels facteurs influencent la loi de Poisson ?",
"position": 26,
"acceptedAnswer": {
"@type": "Answer",
"text": "Les facteurs comme l'âge, le sexe et les antécédents médicaux influencent les événements modélisés."
}
},
{
"@type": "Question",
"name": "Comment identifier les facteurs de risque ?",
"position": 27,
"acceptedAnswer": {
"@type": "Answer",
"text": "On analyse les données épidémiologiques pour identifier les facteurs associés à des événements rares."
}
},
{
"@type": "Question",
"name": "Les comportements influencent-ils les résultats ?",
"position": 28,
"acceptedAnswer": {
"@type": "Answer",
"text": "Oui, des comportements comme le tabagisme ou l'alimentation peuvent augmenter les risques d'événements."
}
},
{
"@type": "Question",
"name": "Quels facteurs environnementaux sont considérés ?",
"position": 29,
"acceptedAnswer": {
"@type": "Answer",
"text": "Des facteurs comme la pollution et l'accès aux soins de santé sont pris en compte dans l'analyse."
}
},
{
"@type": "Question",
"name": "Comment les facteurs de risque sont-ils utilisés ?",
"position": 30,
"acceptedAnswer": {
"@type": "Answer",
"text": "Ils sont utilisés pour orienter les politiques de santé publique et les stratégies de prévention."
}
}
]
}
]
}
In today's landscape of data management, the importance of knowledge graphs and ontologies is escalating as critical mechanisms aligned with the FAIR Guiding Principles-ensuring data and metadata are ...
We introduce "semantic units" as a conceptual solution, although currently exemplified only in a limited prototype. Semantic units structure a knowledge graph into identifiable and semantically meanin...
Semantic units, applicable in RDF/OWL and labeled property graphs, offer support for making statements about statements and facilitate graph-alignment, subgraph-matching, knowledge graph profiling, an...
Aging is associated with functional activation changes in domain-specific regions and large-scale brain networks. This preregistered Functional magnetic resonance imaging (fMRI) study investigated the...
To compare longitudinal verbal fluency performance among Latinx Spanish speakers who develop Alzheimer's disease to those who do not develop dementia in absolute number of words produced on each task ...
Participants included 833 Latinx Spanish-speaking older adults from a community-based prospective cohort in Manhattan. We performed growth curve modeling to investigate the trajectories of letter and ...
Letter fluency performance did not decline in controls; we observed a linear decline in those who developed Alzheimer's disease. Semantic fluency declined in both groups and showed an increased rate o...
A decline in letter fluency and a more rapid and accelerating decline over time in semantic fluency distinguished people who developed Alzheimer's disease from controls. Using the semantic index was n...
Ecological codes have been defined as every biological code integrated by factors originated by the environmental context that participates in the codepoiesis process. Ecological codes create a strict...
One of the most common distinctions in long-term memory is that between semantic (i.e., general world knowledge) and episodic (i.e., recollection of contextually specific events from one's past). Howe...
Computational research suggests that semantic memory, operationalized as semantic memory networks, undergoes age-related changes. Previous work suggests that concepts in older adults' semantic memory ...
This study presents a Polish semantic priming dataset and semantic similarity ratings for word pairs obtained with native Polish speakers, as well as a range of semantic spaces. The word pairs include...
We examine why some words are more memorable than others by using predictive machine learning models applied to word recognition and recall datasets. Our approach provides more accurate out-of-sample ...
We developed a novel conceptualization of one component of creativity in narratives by integrating creativity theory and distributional semantics theory. We termed the new construct divergent semantic...