Comment identifier un modèle économétrique approprié ?
Il faut analyser la nature des données et les relations entre les variables.
Modèles économétriquesAnalyse de données
#2
Quels tests sont utilisés pour valider un modèle ?
Des tests comme le test de normalité, le test de multicolinéarité et le test de spécification.
Tests statistiquesValidité du modèle
#3
Qu'est-ce qu'un modèle de régression ?
C'est un modèle qui établit une relation entre une variable dépendante et une ou plusieurs variables indépendantes.
RégressionAnalyse de régression
#4
Comment évaluer la performance d'un modèle ?
On utilise des indicateurs comme le R², l'erreur quadratique moyenne et le test de Fisher.
Évaluation de modèleR²
#5
Qu'est-ce qu'un modèle à variables instrumentales ?
C'est un modèle utilisé pour corriger les biais d'endogénéité en utilisant des variables externes.
Variables instrumentalesEndogénéité
Symptômes
5
#1
Quels sont les signes d'un modèle mal spécifié ?
Des résidus non aléatoires, des valeurs aberrantes et des relations non linéaires.
Modèle mal spécifiéRésidus
#2
Comment détecter l'hétéroscédasticité ?
En utilisant des tests comme le test de Breusch-Pagan ou en observant les résidus.
HétéroscédasticitéTests de Breusch-Pagan
#3
Quels effets peut avoir la multicolinéarité ?
Elle peut rendre les estimations des coefficients instables et difficiles à interpréter.
MulticolinéaritéEstimation des coefficients
#4
Qu'est-ce qu'un biais d'échantillonnage ?
C'est une erreur systématique due à un échantillon non représentatif de la population.
Biais d'échantillonnageÉchantillonnage
#5
Quels sont les signes d'une autocorrélation ?
Des résidus corrélés dans le temps, souvent détectés par le test de Durbin-Watson.
AutocorrélationTest de Durbin-Watson
Prévention
5
#1
Comment éviter les biais dans les modèles ?
En s'assurant que l'échantillon est représentatif et en utilisant des méthodes de validation.
BiaisValidation de modèle
#2
Quelles pratiques pour une bonne collecte de données ?
Utiliser des protocoles standardisés et s'assurer de la qualité et de la fiabilité des données.
Collecte de donnéesQualité des données
#3
Comment choisir les bonnes variables ?
En se basant sur la théorie, des études antérieures et des tests de significativité.
Sélection de variablesSignificativité
#4
Quelles sont les bonnes pratiques de modélisation ?
Utiliser des diagnostics appropriés, tester les hypothèses et valider le modèle sur des données nouvelles.
Pratiques de modélisationDiagnostics
#5
Comment éviter le surajustement ?
En utilisant des techniques de validation croisée et en limitant la complexité du modèle.
SurajustementValidation croisée
Traitements
5
#1
Comment corriger l'hétéroscédasticité ?
En utilisant des transformations de données ou des modèles de régression robustes.
HétéroscédasticitéRégression robuste
#2
Quelles méthodes pour traiter la multicolinéarité ?
On peut utiliser la sélection de variables, la régularisation ou l'analyse en composantes principales.
MulticolinéaritéAnalyse en composantes principales
#3
Comment améliorer un modèle économétrique ?
En ajoutant des variables pertinentes, en transformant les données ou en utilisant des modèles non linéaires.
Amélioration de modèleModèles non linéaires
#4
Qu'est-ce que la régularisation ?
C'est une technique pour prévenir le surajustement en ajoutant une pénalité aux coefficients.
RégularisationSurajustement
#5
Comment utiliser des modèles de séries temporelles ?
Pour analyser des données chronologiques et prévoir des tendances futures à l'aide de lissage.
Séries temporellesPrévision
Complications
5
#1
Quelles sont les conséquences d'un modèle mal spécifié ?
Des prévisions inexactes, des décisions erronées et une mauvaise interprétation des résultats.
Modèle mal spécifiéPrévisions inexactes
#2
Quels risques d'une autocorrélation non traitée ?
Elle peut conduire à des estimations biaisées et à des tests statistiques non fiables.
AutocorrélationEstimation biaisée
#3
Comment la multicolinéarité affecte-t-elle les résultats ?
Elle rend difficile l'évaluation de l'impact individuel des variables sur la variable dépendante.
MulticolinéaritéImpact des variables
#4
Quelles erreurs peuvent survenir dans l'interprétation des résultats ?
Des conclusions hâtives, des généralisations inappropriées et des politiques mal orientées.
Interprétation des résultatsErreurs d'interprétation
#5
Quels effets d'un échantillonnage biaisé ?
Il peut fausser les résultats et mener à des recommandations inappropriées.
Échantillonnage biaiséRecommandations
Facteurs de risque
5
#1
Quels facteurs influencent la sélection des variables ?
La théorie économique, la disponibilité des données et les objectifs de recherche.
Sélection de variablesThéorie économique
#2
Comment la taille de l'échantillon affecte-t-elle les résultats ?
Un échantillon trop petit peut entraîner des estimations instables et des biais.
Taille de l'échantillonEstimations instables
#3
Quels sont les risques d'une mauvaise collecte de données ?
Des données inexactes peuvent fausser les résultats et compromettre la validité du modèle.
Collecte de donnéesValidité du modèle
#4
Comment les variables omises affectent-elles le modèle ?
Elles peuvent introduire un biais et fausser les relations estimées entre les variables.
Variables omisesBiais
#5
Quels sont les impacts d'une mauvaise spécification du modèle ?
Des prévisions erronées et des décisions basées sur des analyses incorrectes.
Mauvaise spécificationPrévisions erronées
{
"@context": "https://schema.org",
"@graph": [
{
"@type": "MedicalWebPage",
"name": "Modèles économétriques : Questions médicales les plus fréquentes",
"headline": "Modèles économétriques : Comprendre les symptômes, diagnostics et traitements",
"description": "Guide complet et accessible sur les Modèles économétriques : explications, diagnostics, traitements et prévention. Information médicale validée destinée aux patients.",
"datePublished": "2024-05-22",
"dateModified": "2025-02-16",
"inLanguage": "fr",
"medicalAudience": [
{
"@type": "MedicalAudience",
"name": "Grand public",
"audienceType": "Patient",
"healthCondition": {
"@type": "MedicalCondition",
"name": "Modèles économétriques"
},
"suggestedMinAge": 18,
"suggestedGender": "unisex"
},
{
"@type": "MedicalAudience",
"name": "Médecins",
"audienceType": "Physician",
"geographicArea": {
"@type": "AdministrativeArea",
"name": "France"
}
},
{
"@type": "MedicalAudience",
"name": "Chercheurs",
"audienceType": "Researcher",
"geographicArea": {
"@type": "AdministrativeArea",
"name": "International"
}
}
],
"reviewedBy": {
"@type": "Person",
"name": "Dr Olivier Menir",
"jobTitle": "Expert en Médecine",
"description": "Expert en Médecine, Optimisation des Parcours de Soins et Révision Médicale",
"url": "/static/pages/docteur-olivier-menir.html",
"alumniOf": {
"@type": "EducationalOrganization",
"name": "Université Paris Descartes"
}
},
"isPartOf": {
"@type": "MedicalWebPage",
"name": "Modèles économiques",
"url": "https://questionsmedicales.fr/mesh/D018803",
"about": {
"@type": "MedicalCondition",
"name": "Modèles économiques",
"code": {
"@type": "MedicalCode",
"code": "D018803",
"codingSystem": "MeSH"
},
"identifier": {
"@type": "PropertyValue",
"propertyID": "MeSH Tree",
"value": "N06.850.520.830.500.600"
}
}
},
"about": {
"@type": "MedicalCondition",
"name": "Modèles économétriques",
"alternateName": "Models, Econometric",
"code": {
"@type": "MedicalCode",
"code": "D017059",
"codingSystem": "MeSH"
}
},
"author": [
{
"@type": "Person",
"name": "James Heckman",
"url": "https://questionsmedicales.fr/author/James%20Heckman",
"affiliation": {
"@type": "Organization",
"name": "The University of Chicago, Department of Economics, 1126 E. 59 St., Chicago, IL 60637."
}
},
{
"@type": "Person",
"name": "Rodrigo Pinto",
"url": "https://questionsmedicales.fr/author/Rodrigo%20Pinto",
"affiliation": {
"@type": "Organization",
"name": "University of California at Los Angeles, Department of Economics, 315 Portola Plaza, Room 8385, Los Angeles, CA 90095."
}
},
{
"@type": "Person",
"name": "Tamás Krisztin",
"url": "https://questionsmedicales.fr/author/Tam%C3%A1s%20Krisztin",
"affiliation": {
"@type": "Organization",
"name": "International Institute for Applied Systems Analysis (IIASA) Laxenburg Austria."
}
},
{
"@type": "Person",
"name": "Philipp Piribauer",
"url": "https://questionsmedicales.fr/author/Philipp%20Piribauer",
"affiliation": {
"@type": "Organization",
"name": "Austrian Institute of Economic Research (WIFO) Vienna Austria."
}
},
{
"@type": "Person",
"name": "Gagan Deep Sharma",
"url": "https://questionsmedicales.fr/author/Gagan%20Deep%20Sharma",
"affiliation": {
"@type": "Organization",
"name": "University School of Management Studies, Guru Gobind Singh Indraprastha University, New Delhi-110078, India."
}
}
],
"citation": [
{
"@type": "ScholarlyArticle",
"name": "A Tale of Two Curriculums: The Implications of Curriculum Design on Student Burnout.",
"datePublished": "2022-07-20",
"url": "https://questionsmedicales.fr/article/35856650",
"identifier": {
"@type": "PropertyValue",
"propertyID": "DOI",
"value": "10.1097/JPA.0000000000000446"
}
},
{
"@type": "ScholarlyArticle",
"name": "A comprehensive medical Spanish curriculum model: the Vida Medical Spanish Curriculum.",
"datePublished": "2023-06-30",
"url": "https://questionsmedicales.fr/article/37391778",
"identifier": {
"@type": "PropertyValue",
"propertyID": "DOI",
"value": "10.1186/s12909-023-04473-0"
}
},
{
"@type": "ScholarlyArticle",
"name": "A Survey on Curriculum Learning.",
"datePublished": "2022-08-04",
"url": "https://questionsmedicales.fr/article/33788677",
"identifier": {
"@type": "PropertyValue",
"propertyID": "DOI",
"value": "10.1109/TPAMI.2021.3069908"
}
},
{
"@type": "ScholarlyArticle",
"name": "\"The curriculum brings equity to the forefront\": Pediatric residents' perspectives and experiences in a longitudinal EDI curriculum.",
"datePublished": "2023-01-02",
"url": "https://questionsmedicales.fr/article/36599745",
"identifier": {
"@type": "PropertyValue",
"propertyID": "DOI",
"value": "10.1016/j.jnma.2022.12.009"
}
},
{
"@type": "ScholarlyArticle",
"name": "Development and assessment of a curriculum model for virtual simulation in nursing: curriculum development and pilot-evaluation.",
"datePublished": "2023-04-26",
"url": "https://questionsmedicales.fr/article/37101191",
"identifier": {
"@type": "PropertyValue",
"propertyID": "DOI",
"value": "10.1186/s12909-023-04283-4"
}
}
],
"breadcrumb": {
"@type": "BreadcrumbList",
"itemListElement": [
{
"@type": "ListItem",
"position": 1,
"name": "questionsmedicales.fr",
"item": "https://questionsmedicales.fr"
},
{
"@type": "ListItem",
"position": 2,
"name": "Environnement et santé publique",
"item": "https://questionsmedicales.fr/mesh/D004778"
},
{
"@type": "ListItem",
"position": 3,
"name": "Santé publique",
"item": "https://questionsmedicales.fr/mesh/D011634"
},
{
"@type": "ListItem",
"position": 4,
"name": "Méthodes épidémiologiques",
"item": "https://questionsmedicales.fr/mesh/D004812"
},
{
"@type": "ListItem",
"position": 5,
"name": "Statistiques comme sujet",
"item": "https://questionsmedicales.fr/mesh/D013223"
},
{
"@type": "ListItem",
"position": 6,
"name": "Modèles statistiques",
"item": "https://questionsmedicales.fr/mesh/D015233"
},
{
"@type": "ListItem",
"position": 7,
"name": "Modèles économiques",
"item": "https://questionsmedicales.fr/mesh/D018803"
},
{
"@type": "ListItem",
"position": 8,
"name": "Modèles économétriques",
"item": "https://questionsmedicales.fr/mesh/D017059"
}
]
}
},
{
"@type": "MedicalWebPage",
"name": "Article complet : Modèles économétriques - Questions et réponses",
"headline": "Questions et réponses médicales fréquentes sur Modèles économétriques",
"description": "Une compilation de questions et réponses structurées, validées par des experts médicaux.",
"datePublished": "2025-05-02",
"inLanguage": "fr",
"hasPart": [
{
"@type": "MedicalWebPage",
"name": "Diagnostic",
"headline": "Diagnostic sur Modèles économétriques",
"description": "Comment identifier un modèle économétrique approprié ?\nQuels tests sont utilisés pour valider un modèle ?\nQu'est-ce qu'un modèle de régression ?\nComment évaluer la performance d'un modèle ?\nQu'est-ce qu'un modèle à variables instrumentales ?",
"url": "https://questionsmedicales.fr/mesh/D017059?mesh_terms=Curriculum#section-diagnostic"
},
{
"@type": "MedicalWebPage",
"name": "Symptômes",
"headline": "Symptômes sur Modèles économétriques",
"description": "Quels sont les signes d'un modèle mal spécifié ?\nComment détecter l'hétéroscédasticité ?\nQuels effets peut avoir la multicolinéarité ?\nQu'est-ce qu'un biais d'échantillonnage ?\nQuels sont les signes d'une autocorrélation ?",
"url": "https://questionsmedicales.fr/mesh/D017059?mesh_terms=Curriculum#section-symptômes"
},
{
"@type": "MedicalWebPage",
"name": "Prévention",
"headline": "Prévention sur Modèles économétriques",
"description": "Comment éviter les biais dans les modèles ?\nQuelles pratiques pour une bonne collecte de données ?\nComment choisir les bonnes variables ?\nQuelles sont les bonnes pratiques de modélisation ?\nComment éviter le surajustement ?",
"url": "https://questionsmedicales.fr/mesh/D017059?mesh_terms=Curriculum#section-prévention"
},
{
"@type": "MedicalWebPage",
"name": "Traitements",
"headline": "Traitements sur Modèles économétriques",
"description": "Comment corriger l'hétéroscédasticité ?\nQuelles méthodes pour traiter la multicolinéarité ?\nComment améliorer un modèle économétrique ?\nQu'est-ce que la régularisation ?\nComment utiliser des modèles de séries temporelles ?",
"url": "https://questionsmedicales.fr/mesh/D017059?mesh_terms=Curriculum#section-traitements"
},
{
"@type": "MedicalWebPage",
"name": "Complications",
"headline": "Complications sur Modèles économétriques",
"description": "Quelles sont les conséquences d'un modèle mal spécifié ?\nQuels risques d'une autocorrélation non traitée ?\nComment la multicolinéarité affecte-t-elle les résultats ?\nQuelles erreurs peuvent survenir dans l'interprétation des résultats ?\nQuels effets d'un échantillonnage biaisé ?",
"url": "https://questionsmedicales.fr/mesh/D017059?mesh_terms=Curriculum#section-complications"
},
{
"@type": "MedicalWebPage",
"name": "Facteurs de risque",
"headline": "Facteurs de risque sur Modèles économétriques",
"description": "Quels facteurs influencent la sélection des variables ?\nComment la taille de l'échantillon affecte-t-elle les résultats ?\nQuels sont les risques d'une mauvaise collecte de données ?\nComment les variables omises affectent-elles le modèle ?\nQuels sont les impacts d'une mauvaise spécification du modèle ?",
"url": "https://questionsmedicales.fr/mesh/D017059?mesh_terms=Curriculum#section-facteurs de risque"
}
]
},
{
"@type": "FAQPage",
"mainEntity": [
{
"@type": "Question",
"name": "Comment identifier un modèle économétrique approprié ?",
"position": 1,
"acceptedAnswer": {
"@type": "Answer",
"text": "Il faut analyser la nature des données et les relations entre les variables."
}
},
{
"@type": "Question",
"name": "Quels tests sont utilisés pour valider un modèle ?",
"position": 2,
"acceptedAnswer": {
"@type": "Answer",
"text": "Des tests comme le test de normalité, le test de multicolinéarité et le test de spécification."
}
},
{
"@type": "Question",
"name": "Qu'est-ce qu'un modèle de régression ?",
"position": 3,
"acceptedAnswer": {
"@type": "Answer",
"text": "C'est un modèle qui établit une relation entre une variable dépendante et une ou plusieurs variables indépendantes."
}
},
{
"@type": "Question",
"name": "Comment évaluer la performance d'un modèle ?",
"position": 4,
"acceptedAnswer": {
"@type": "Answer",
"text": "On utilise des indicateurs comme le R², l'erreur quadratique moyenne et le test de Fisher."
}
},
{
"@type": "Question",
"name": "Qu'est-ce qu'un modèle à variables instrumentales ?",
"position": 5,
"acceptedAnswer": {
"@type": "Answer",
"text": "C'est un modèle utilisé pour corriger les biais d'endogénéité en utilisant des variables externes."
}
},
{
"@type": "Question",
"name": "Quels sont les signes d'un modèle mal spécifié ?",
"position": 6,
"acceptedAnswer": {
"@type": "Answer",
"text": "Des résidus non aléatoires, des valeurs aberrantes et des relations non linéaires."
}
},
{
"@type": "Question",
"name": "Comment détecter l'hétéroscédasticité ?",
"position": 7,
"acceptedAnswer": {
"@type": "Answer",
"text": "En utilisant des tests comme le test de Breusch-Pagan ou en observant les résidus."
}
},
{
"@type": "Question",
"name": "Quels effets peut avoir la multicolinéarité ?",
"position": 8,
"acceptedAnswer": {
"@type": "Answer",
"text": "Elle peut rendre les estimations des coefficients instables et difficiles à interpréter."
}
},
{
"@type": "Question",
"name": "Qu'est-ce qu'un biais d'échantillonnage ?",
"position": 9,
"acceptedAnswer": {
"@type": "Answer",
"text": "C'est une erreur systématique due à un échantillon non représentatif de la population."
}
},
{
"@type": "Question",
"name": "Quels sont les signes d'une autocorrélation ?",
"position": 10,
"acceptedAnswer": {
"@type": "Answer",
"text": "Des résidus corrélés dans le temps, souvent détectés par le test de Durbin-Watson."
}
},
{
"@type": "Question",
"name": "Comment éviter les biais dans les modèles ?",
"position": 11,
"acceptedAnswer": {
"@type": "Answer",
"text": "En s'assurant que l'échantillon est représentatif et en utilisant des méthodes de validation."
}
},
{
"@type": "Question",
"name": "Quelles pratiques pour une bonne collecte de données ?",
"position": 12,
"acceptedAnswer": {
"@type": "Answer",
"text": "Utiliser des protocoles standardisés et s'assurer de la qualité et de la fiabilité des données."
}
},
{
"@type": "Question",
"name": "Comment choisir les bonnes variables ?",
"position": 13,
"acceptedAnswer": {
"@type": "Answer",
"text": "En se basant sur la théorie, des études antérieures et des tests de significativité."
}
},
{
"@type": "Question",
"name": "Quelles sont les bonnes pratiques de modélisation ?",
"position": 14,
"acceptedAnswer": {
"@type": "Answer",
"text": "Utiliser des diagnostics appropriés, tester les hypothèses et valider le modèle sur des données nouvelles."
}
},
{
"@type": "Question",
"name": "Comment éviter le surajustement ?",
"position": 15,
"acceptedAnswer": {
"@type": "Answer",
"text": "En utilisant des techniques de validation croisée et en limitant la complexité du modèle."
}
},
{
"@type": "Question",
"name": "Comment corriger l'hétéroscédasticité ?",
"position": 16,
"acceptedAnswer": {
"@type": "Answer",
"text": "En utilisant des transformations de données ou des modèles de régression robustes."
}
},
{
"@type": "Question",
"name": "Quelles méthodes pour traiter la multicolinéarité ?",
"position": 17,
"acceptedAnswer": {
"@type": "Answer",
"text": "On peut utiliser la sélection de variables, la régularisation ou l'analyse en composantes principales."
}
},
{
"@type": "Question",
"name": "Comment améliorer un modèle économétrique ?",
"position": 18,
"acceptedAnswer": {
"@type": "Answer",
"text": "En ajoutant des variables pertinentes, en transformant les données ou en utilisant des modèles non linéaires."
}
},
{
"@type": "Question",
"name": "Qu'est-ce que la régularisation ?",
"position": 19,
"acceptedAnswer": {
"@type": "Answer",
"text": "C'est une technique pour prévenir le surajustement en ajoutant une pénalité aux coefficients."
}
},
{
"@type": "Question",
"name": "Comment utiliser des modèles de séries temporelles ?",
"position": 20,
"acceptedAnswer": {
"@type": "Answer",
"text": "Pour analyser des données chronologiques et prévoir des tendances futures à l'aide de lissage."
}
},
{
"@type": "Question",
"name": "Quelles sont les conséquences d'un modèle mal spécifié ?",
"position": 21,
"acceptedAnswer": {
"@type": "Answer",
"text": "Des prévisions inexactes, des décisions erronées et une mauvaise interprétation des résultats."
}
},
{
"@type": "Question",
"name": "Quels risques d'une autocorrélation non traitée ?",
"position": 22,
"acceptedAnswer": {
"@type": "Answer",
"text": "Elle peut conduire à des estimations biaisées et à des tests statistiques non fiables."
}
},
{
"@type": "Question",
"name": "Comment la multicolinéarité affecte-t-elle les résultats ?",
"position": 23,
"acceptedAnswer": {
"@type": "Answer",
"text": "Elle rend difficile l'évaluation de l'impact individuel des variables sur la variable dépendante."
}
},
{
"@type": "Question",
"name": "Quelles erreurs peuvent survenir dans l'interprétation des résultats ?",
"position": 24,
"acceptedAnswer": {
"@type": "Answer",
"text": "Des conclusions hâtives, des généralisations inappropriées et des politiques mal orientées."
}
},
{
"@type": "Question",
"name": "Quels effets d'un échantillonnage biaisé ?",
"position": 25,
"acceptedAnswer": {
"@type": "Answer",
"text": "Il peut fausser les résultats et mener à des recommandations inappropriées."
}
},
{
"@type": "Question",
"name": "Quels facteurs influencent la sélection des variables ?",
"position": 26,
"acceptedAnswer": {
"@type": "Answer",
"text": "La théorie économique, la disponibilité des données et les objectifs de recherche."
}
},
{
"@type": "Question",
"name": "Comment la taille de l'échantillon affecte-t-elle les résultats ?",
"position": 27,
"acceptedAnswer": {
"@type": "Answer",
"text": "Un échantillon trop petit peut entraîner des estimations instables et des biais."
}
},
{
"@type": "Question",
"name": "Quels sont les risques d'une mauvaise collecte de données ?",
"position": 28,
"acceptedAnswer": {
"@type": "Answer",
"text": "Des données inexactes peuvent fausser les résultats et compromettre la validité du modèle."
}
},
{
"@type": "Question",
"name": "Comment les variables omises affectent-elles le modèle ?",
"position": 29,
"acceptedAnswer": {
"@type": "Answer",
"text": "Elles peuvent introduire un biais et fausser les relations estimées entre les variables."
}
},
{
"@type": "Question",
"name": "Quels sont les impacts d'une mauvaise spécification du modèle ?",
"position": 30,
"acceptedAnswer": {
"@type": "Answer",
"text": "Des prévisions erronées et des décisions basées sur des analyses incorrectes."
}
}
]
}
]
}
The purpose of this study was to determine whether a difference exists in the 3 subconstructs of burnout between 2 cohorts of physician assistant (PA) students in different curricula, and the impact o...
Using a mixed-methods study design, 86 students completed the Maslach Burnout Inventory-General Survey for Students (MBI-GSS) 8 months postmatriculation. Focus group interviews expanded on the quantit...
No significant statistical difference was found in the emotional exhaustion ( p = 0.35), cynicism ( p = 0.29), or professional efficacy ( p = 0.23) scores between the 2 cohorts of PA students. Student...
Despite curricular modifications to address student burnout in the Colorado Curriculum, a statistical difference in burnout scores was not found between the 2 student cohorts. Qualitative findings sug...
Racial and language disparities in the United States healthcare system have long undermined the quality of care provided to minority patients. With the projected growth of the Hispanic population, the...
The study utilized the Kirkpatrick Model to evaluate the success of the medical Spanish curriculum. A total of 111 medical students voluntarily enrolled in the medical Spanish course. Out of these stu...
Students achieved a mean score of over 80% on all components of the Spanish Objective Structured Clinical Examination and the Multiple-Choice Exam. Survey data suggest that students felt able to commu...
Students who sat for the OSCE and MCE were self-selected. Baseline data on student perceptions and Spanish competency are not sufficient for making comparisons....
Curriculum learning (CL) is a training strategy that trains a machine learning model from easier data to harder data, which imitates the meaningful learning order in human curricula. As an easy-to-use...
The Accreditation Council for Graduate Medical Education (ACGME) Common Program Requirements include training in caring for diverse populations and understanding social determinants of health. Our lar...
To explore pediatric residents' perspectives and experiences in our longitudinal EDI curriculum....
We applied the holistic framework by Haji et al. to characterize the effect of our EDI curriculum. We conducted 4 focus groups from November 2019 to September 2020 with trained facilitators using a st...
26 pediatric senior residents participated either in person (n = 13) or online (n = 13). Themes emerged from domains of knowledge, attitudes and behavioral change. These included having: (1) increased...
A longitudinal EDI curriculum has the potential to influence individual trainees, their work, and perceptions of the broader institutions in which they operate. Residents recognized and valued the cur...
To introduce virtual simulation as a strategy of nursing education and provide valid educational content, the best curriculum model of virtual simulation needs to be developed....
Curriculum development process and pilot evaluation was used. The curriculum content and structure was developed by analyzing literature including previous studies and major nursing classification sys...
The curriculum developed for virtual simulation in nursing education contained three domains of content areas: (1) enhancing clinical decision-making, (2) experiencing low-exposed situations, and (3) ...
Considering that nursing education is encountering new demands and challenges from students and the changing society, the newly suggested curriculum for virtual nursing simulation can help nurse educa...
Internationalisation is a broad term that has been used to encompass a range of activities including international student recruitment, student mobility and exchange, international teaching and resear...
Onconephrology focuses on management of kidney disease in cancer, which manifests itself in a variety of clinical syndromes, including acute kidney injury, chronic kidney disease, hypertension, protei...
Microsurgery is one of the most challenging areas of surgery with a steep learning curve. To address this educational need, microsurgery curricula have been developed and validated, with the majority ...
A training curriculum was delivered over 5 days between 2017 and 2020 focusing on (1) microscopic field manipulation, (2) knot tying, nondominant hand usage, (3) 3-D models/anastomosis, and (4) tissue...
In total, 155 participants undertook the curriculum, totaling 5,425 hours of training. More than 75% of students reported the course as excellent, with the remaining voting for "good." All participant...
Robust evaluation of curriculum can be applied to microsurgery training demonstrating its efficacy in reducing surgical errors with an improvement in overall technical skills that can extend to impact...
A dental technologist is one of the most essential allied dental health professionals and the dental technology curriculum should be comprehensively reviewed on a regular basis. This study aims to com...
A descriptive analysis was carried out using Laurie Brady's four-stage strategy. First, available curriculum materials were collected from four different institutions' electronic webpage: AIMST (Malay...
The core BDT curriculum content is concurred upon by all four universities, with an emphasis on basic sciences, laboratory materials, practical sessions and research projects. However, the credit weig...
The present study identified several areas for Malaysian BDT curriculum development and improvement. The proposed framework can be a guide for Malaysian dental schools in designing a comprehensive den...
Generalization (or transfer) is the ability to repurpose knowledge in novel settings. It is often asserted that generalization is an important ingredient of human intelligence, but its extent, nature,...