Comment identifier un modèle économétrique approprié ?
Il faut analyser la nature des données et les relations entre les variables.
Modèles économétriquesAnalyse de données
#2
Quels tests sont utilisés pour valider un modèle ?
Des tests comme le test de normalité, le test de multicolinéarité et le test de spécification.
Tests statistiquesValidité du modèle
#3
Qu'est-ce qu'un modèle de régression ?
C'est un modèle qui établit une relation entre une variable dépendante et une ou plusieurs variables indépendantes.
RégressionAnalyse de régression
#4
Comment évaluer la performance d'un modèle ?
On utilise des indicateurs comme le R², l'erreur quadratique moyenne et le test de Fisher.
Évaluation de modèleR²
#5
Qu'est-ce qu'un modèle à variables instrumentales ?
C'est un modèle utilisé pour corriger les biais d'endogénéité en utilisant des variables externes.
Variables instrumentalesEndogénéité
Symptômes
5
#1
Quels sont les signes d'un modèle mal spécifié ?
Des résidus non aléatoires, des valeurs aberrantes et des relations non linéaires.
Modèle mal spécifiéRésidus
#2
Comment détecter l'hétéroscédasticité ?
En utilisant des tests comme le test de Breusch-Pagan ou en observant les résidus.
HétéroscédasticitéTests de Breusch-Pagan
#3
Quels effets peut avoir la multicolinéarité ?
Elle peut rendre les estimations des coefficients instables et difficiles à interpréter.
MulticolinéaritéEstimation des coefficients
#4
Qu'est-ce qu'un biais d'échantillonnage ?
C'est une erreur systématique due à un échantillon non représentatif de la population.
Biais d'échantillonnageÉchantillonnage
#5
Quels sont les signes d'une autocorrélation ?
Des résidus corrélés dans le temps, souvent détectés par le test de Durbin-Watson.
AutocorrélationTest de Durbin-Watson
Prévention
5
#1
Comment éviter les biais dans les modèles ?
En s'assurant que l'échantillon est représentatif et en utilisant des méthodes de validation.
BiaisValidation de modèle
#2
Quelles pratiques pour une bonne collecte de données ?
Utiliser des protocoles standardisés et s'assurer de la qualité et de la fiabilité des données.
Collecte de donnéesQualité des données
#3
Comment choisir les bonnes variables ?
En se basant sur la théorie, des études antérieures et des tests de significativité.
Sélection de variablesSignificativité
#4
Quelles sont les bonnes pratiques de modélisation ?
Utiliser des diagnostics appropriés, tester les hypothèses et valider le modèle sur des données nouvelles.
Pratiques de modélisationDiagnostics
#5
Comment éviter le surajustement ?
En utilisant des techniques de validation croisée et en limitant la complexité du modèle.
SurajustementValidation croisée
Traitements
5
#1
Comment corriger l'hétéroscédasticité ?
En utilisant des transformations de données ou des modèles de régression robustes.
HétéroscédasticitéRégression robuste
#2
Quelles méthodes pour traiter la multicolinéarité ?
On peut utiliser la sélection de variables, la régularisation ou l'analyse en composantes principales.
MulticolinéaritéAnalyse en composantes principales
#3
Comment améliorer un modèle économétrique ?
En ajoutant des variables pertinentes, en transformant les données ou en utilisant des modèles non linéaires.
Amélioration de modèleModèles non linéaires
#4
Qu'est-ce que la régularisation ?
C'est une technique pour prévenir le surajustement en ajoutant une pénalité aux coefficients.
RégularisationSurajustement
#5
Comment utiliser des modèles de séries temporelles ?
Pour analyser des données chronologiques et prévoir des tendances futures à l'aide de lissage.
Séries temporellesPrévision
Complications
5
#1
Quelles sont les conséquences d'un modèle mal spécifié ?
Des prévisions inexactes, des décisions erronées et une mauvaise interprétation des résultats.
Modèle mal spécifiéPrévisions inexactes
#2
Quels risques d'une autocorrélation non traitée ?
Elle peut conduire à des estimations biaisées et à des tests statistiques non fiables.
AutocorrélationEstimation biaisée
#3
Comment la multicolinéarité affecte-t-elle les résultats ?
Elle rend difficile l'évaluation de l'impact individuel des variables sur la variable dépendante.
MulticolinéaritéImpact des variables
#4
Quelles erreurs peuvent survenir dans l'interprétation des résultats ?
Des conclusions hâtives, des généralisations inappropriées et des politiques mal orientées.
Interprétation des résultatsErreurs d'interprétation
#5
Quels effets d'un échantillonnage biaisé ?
Il peut fausser les résultats et mener à des recommandations inappropriées.
Échantillonnage biaiséRecommandations
Facteurs de risque
5
#1
Quels facteurs influencent la sélection des variables ?
La théorie économique, la disponibilité des données et les objectifs de recherche.
Sélection de variablesThéorie économique
#2
Comment la taille de l'échantillon affecte-t-elle les résultats ?
Un échantillon trop petit peut entraîner des estimations instables et des biais.
Taille de l'échantillonEstimations instables
#3
Quels sont les risques d'une mauvaise collecte de données ?
Des données inexactes peuvent fausser les résultats et compromettre la validité du modèle.
Collecte de donnéesValidité du modèle
#4
Comment les variables omises affectent-elles le modèle ?
Elles peuvent introduire un biais et fausser les relations estimées entre les variables.
Variables omisesBiais
#5
Quels sont les impacts d'une mauvaise spécification du modèle ?
Des prévisions erronées et des décisions basées sur des analyses incorrectes.
Mauvaise spécificationPrévisions erronées
{
"@context": "https://schema.org",
"@graph": [
{
"@type": "MedicalWebPage",
"name": "Modèles économétriques : Questions médicales les plus fréquentes",
"headline": "Modèles économétriques : Comprendre les symptômes, diagnostics et traitements",
"description": "Guide complet et accessible sur les Modèles économétriques : explications, diagnostics, traitements et prévention. Information médicale validée destinée aux patients.",
"datePublished": "2024-05-22",
"dateModified": "2025-02-16",
"inLanguage": "fr",
"medicalAudience": [
{
"@type": "MedicalAudience",
"name": "Grand public",
"audienceType": "Patient",
"healthCondition": {
"@type": "MedicalCondition",
"name": "Modèles économétriques"
},
"suggestedMinAge": 18,
"suggestedGender": "unisex"
},
{
"@type": "MedicalAudience",
"name": "Médecins",
"audienceType": "Physician",
"geographicArea": {
"@type": "AdministrativeArea",
"name": "France"
}
},
{
"@type": "MedicalAudience",
"name": "Chercheurs",
"audienceType": "Researcher",
"geographicArea": {
"@type": "AdministrativeArea",
"name": "International"
}
}
],
"reviewedBy": {
"@type": "Person",
"name": "Dr Olivier Menir",
"jobTitle": "Expert en Médecine",
"description": "Expert en Médecine, Optimisation des Parcours de Soins et Révision Médicale",
"url": "/static/pages/docteur-olivier-menir.html",
"alumniOf": {
"@type": "EducationalOrganization",
"name": "Université Paris Descartes"
}
},
"isPartOf": {
"@type": "MedicalWebPage",
"name": "Modèles économiques",
"url": "https://questionsmedicales.fr/mesh/D018803",
"about": {
"@type": "MedicalCondition",
"name": "Modèles économiques",
"code": {
"@type": "MedicalCode",
"code": "D018803",
"codingSystem": "MeSH"
},
"identifier": {
"@type": "PropertyValue",
"propertyID": "MeSH Tree",
"value": "N06.850.520.830.500.600"
}
}
},
"about": {
"@type": "MedicalCondition",
"name": "Modèles économétriques",
"alternateName": "Models, Econometric",
"code": {
"@type": "MedicalCode",
"code": "D017059",
"codingSystem": "MeSH"
}
},
"author": [
{
"@type": "Person",
"name": "James Heckman",
"url": "https://questionsmedicales.fr/author/James%20Heckman",
"affiliation": {
"@type": "Organization",
"name": "The University of Chicago, Department of Economics, 1126 E. 59 St., Chicago, IL 60637."
}
},
{
"@type": "Person",
"name": "Rodrigo Pinto",
"url": "https://questionsmedicales.fr/author/Rodrigo%20Pinto",
"affiliation": {
"@type": "Organization",
"name": "University of California at Los Angeles, Department of Economics, 315 Portola Plaza, Room 8385, Los Angeles, CA 90095."
}
},
{
"@type": "Person",
"name": "Tamás Krisztin",
"url": "https://questionsmedicales.fr/author/Tam%C3%A1s%20Krisztin",
"affiliation": {
"@type": "Organization",
"name": "International Institute for Applied Systems Analysis (IIASA) Laxenburg Austria."
}
},
{
"@type": "Person",
"name": "Philipp Piribauer",
"url": "https://questionsmedicales.fr/author/Philipp%20Piribauer",
"affiliation": {
"@type": "Organization",
"name": "Austrian Institute of Economic Research (WIFO) Vienna Austria."
}
},
{
"@type": "Person",
"name": "Gagan Deep Sharma",
"url": "https://questionsmedicales.fr/author/Gagan%20Deep%20Sharma",
"affiliation": {
"@type": "Organization",
"name": "University School of Management Studies, Guru Gobind Singh Indraprastha University, New Delhi-110078, India."
}
}
],
"citation": [
{
"@type": "ScholarlyArticle",
"name": "Depression circuit adaptation in post-stroke depression.",
"datePublished": "2023-05-17",
"url": "https://questionsmedicales.fr/article/37201899",
"identifier": {
"@type": "PropertyValue",
"propertyID": "DOI",
"value": "10.1016/j.jad.2023.05.016"
}
},
{
"@type": "ScholarlyArticle",
"name": "Dissecting the depressed mood criterion in adult depression: The heterogeneity of mood disturbances in major depressive episodes.",
"datePublished": "2022-11-28",
"url": "https://questionsmedicales.fr/article/36455714",
"identifier": {
"@type": "PropertyValue",
"propertyID": "DOI",
"value": "10.1016/j.jad.2022.11.047"
}
},
{
"@type": "ScholarlyArticle",
"name": "Rethinking treatment-resistant depression to quasi-tenacious depression.",
"datePublished": "2023-01-12",
"url": "https://questionsmedicales.fr/article/36632817",
"identifier": {
"@type": "PropertyValue",
"propertyID": "DOI",
"value": "10.1192/j.eurpsy.2022.2353"
}
},
{
"@type": "ScholarlyArticle",
"name": "Viewpoint: Difficult-to-treat depression versus treatment-resistant depression: A new integrative perspective for managing depression.",
"datePublished": "2023-09-08",
"url": "https://questionsmedicales.fr/article/37680180",
"identifier": {
"@type": "PropertyValue",
"propertyID": "DOI",
"value": "10.1192/j.eurpsy.2023.2448"
}
},
{
"@type": "ScholarlyArticle",
"name": "Innate depression.",
"datePublished": "2022-08-23",
"url": "https://questionsmedicales.fr/article/35998233",
"identifier": {
"@type": "PropertyValue",
"propertyID": "DOI",
"value": "10.1126/scisignal.ade4885"
}
}
],
"breadcrumb": {
"@type": "BreadcrumbList",
"itemListElement": [
{
"@type": "ListItem",
"position": 1,
"name": "questionsmedicales.fr",
"item": "https://questionsmedicales.fr"
},
{
"@type": "ListItem",
"position": 2,
"name": "Environnement et santé publique",
"item": "https://questionsmedicales.fr/mesh/D004778"
},
{
"@type": "ListItem",
"position": 3,
"name": "Santé publique",
"item": "https://questionsmedicales.fr/mesh/D011634"
},
{
"@type": "ListItem",
"position": 4,
"name": "Méthodes épidémiologiques",
"item": "https://questionsmedicales.fr/mesh/D004812"
},
{
"@type": "ListItem",
"position": 5,
"name": "Statistiques comme sujet",
"item": "https://questionsmedicales.fr/mesh/D013223"
},
{
"@type": "ListItem",
"position": 6,
"name": "Modèles statistiques",
"item": "https://questionsmedicales.fr/mesh/D015233"
},
{
"@type": "ListItem",
"position": 7,
"name": "Modèles économiques",
"item": "https://questionsmedicales.fr/mesh/D018803"
},
{
"@type": "ListItem",
"position": 8,
"name": "Modèles économétriques",
"item": "https://questionsmedicales.fr/mesh/D017059"
}
]
}
},
{
"@type": "MedicalWebPage",
"name": "Article complet : Modèles économétriques - Questions et réponses",
"headline": "Questions et réponses médicales fréquentes sur Modèles économétriques",
"description": "Une compilation de questions et réponses structurées, validées par des experts médicaux.",
"datePublished": "2025-05-03",
"inLanguage": "fr",
"hasPart": [
{
"@type": "MedicalWebPage",
"name": "Diagnostic",
"headline": "Diagnostic sur Modèles économétriques",
"description": "Comment identifier un modèle économétrique approprié ?\nQuels tests sont utilisés pour valider un modèle ?\nQu'est-ce qu'un modèle de régression ?\nComment évaluer la performance d'un modèle ?\nQu'est-ce qu'un modèle à variables instrumentales ?",
"url": "https://questionsmedicales.fr/mesh/D017059?mesh_terms=Depression#section-diagnostic"
},
{
"@type": "MedicalWebPage",
"name": "Symptômes",
"headline": "Symptômes sur Modèles économétriques",
"description": "Quels sont les signes d'un modèle mal spécifié ?\nComment détecter l'hétéroscédasticité ?\nQuels effets peut avoir la multicolinéarité ?\nQu'est-ce qu'un biais d'échantillonnage ?\nQuels sont les signes d'une autocorrélation ?",
"url": "https://questionsmedicales.fr/mesh/D017059?mesh_terms=Depression#section-symptômes"
},
{
"@type": "MedicalWebPage",
"name": "Prévention",
"headline": "Prévention sur Modèles économétriques",
"description": "Comment éviter les biais dans les modèles ?\nQuelles pratiques pour une bonne collecte de données ?\nComment choisir les bonnes variables ?\nQuelles sont les bonnes pratiques de modélisation ?\nComment éviter le surajustement ?",
"url": "https://questionsmedicales.fr/mesh/D017059?mesh_terms=Depression#section-prévention"
},
{
"@type": "MedicalWebPage",
"name": "Traitements",
"headline": "Traitements sur Modèles économétriques",
"description": "Comment corriger l'hétéroscédasticité ?\nQuelles méthodes pour traiter la multicolinéarité ?\nComment améliorer un modèle économétrique ?\nQu'est-ce que la régularisation ?\nComment utiliser des modèles de séries temporelles ?",
"url": "https://questionsmedicales.fr/mesh/D017059?mesh_terms=Depression#section-traitements"
},
{
"@type": "MedicalWebPage",
"name": "Complications",
"headline": "Complications sur Modèles économétriques",
"description": "Quelles sont les conséquences d'un modèle mal spécifié ?\nQuels risques d'une autocorrélation non traitée ?\nComment la multicolinéarité affecte-t-elle les résultats ?\nQuelles erreurs peuvent survenir dans l'interprétation des résultats ?\nQuels effets d'un échantillonnage biaisé ?",
"url": "https://questionsmedicales.fr/mesh/D017059?mesh_terms=Depression#section-complications"
},
{
"@type": "MedicalWebPage",
"name": "Facteurs de risque",
"headline": "Facteurs de risque sur Modèles économétriques",
"description": "Quels facteurs influencent la sélection des variables ?\nComment la taille de l'échantillon affecte-t-elle les résultats ?\nQuels sont les risques d'une mauvaise collecte de données ?\nComment les variables omises affectent-elles le modèle ?\nQuels sont les impacts d'une mauvaise spécification du modèle ?",
"url": "https://questionsmedicales.fr/mesh/D017059?mesh_terms=Depression#section-facteurs de risque"
}
]
},
{
"@type": "FAQPage",
"mainEntity": [
{
"@type": "Question",
"name": "Comment identifier un modèle économétrique approprié ?",
"position": 1,
"acceptedAnswer": {
"@type": "Answer",
"text": "Il faut analyser la nature des données et les relations entre les variables."
}
},
{
"@type": "Question",
"name": "Quels tests sont utilisés pour valider un modèle ?",
"position": 2,
"acceptedAnswer": {
"@type": "Answer",
"text": "Des tests comme le test de normalité, le test de multicolinéarité et le test de spécification."
}
},
{
"@type": "Question",
"name": "Qu'est-ce qu'un modèle de régression ?",
"position": 3,
"acceptedAnswer": {
"@type": "Answer",
"text": "C'est un modèle qui établit une relation entre une variable dépendante et une ou plusieurs variables indépendantes."
}
},
{
"@type": "Question",
"name": "Comment évaluer la performance d'un modèle ?",
"position": 4,
"acceptedAnswer": {
"@type": "Answer",
"text": "On utilise des indicateurs comme le R², l'erreur quadratique moyenne et le test de Fisher."
}
},
{
"@type": "Question",
"name": "Qu'est-ce qu'un modèle à variables instrumentales ?",
"position": 5,
"acceptedAnswer": {
"@type": "Answer",
"text": "C'est un modèle utilisé pour corriger les biais d'endogénéité en utilisant des variables externes."
}
},
{
"@type": "Question",
"name": "Quels sont les signes d'un modèle mal spécifié ?",
"position": 6,
"acceptedAnswer": {
"@type": "Answer",
"text": "Des résidus non aléatoires, des valeurs aberrantes et des relations non linéaires."
}
},
{
"@type": "Question",
"name": "Comment détecter l'hétéroscédasticité ?",
"position": 7,
"acceptedAnswer": {
"@type": "Answer",
"text": "En utilisant des tests comme le test de Breusch-Pagan ou en observant les résidus."
}
},
{
"@type": "Question",
"name": "Quels effets peut avoir la multicolinéarité ?",
"position": 8,
"acceptedAnswer": {
"@type": "Answer",
"text": "Elle peut rendre les estimations des coefficients instables et difficiles à interpréter."
}
},
{
"@type": "Question",
"name": "Qu'est-ce qu'un biais d'échantillonnage ?",
"position": 9,
"acceptedAnswer": {
"@type": "Answer",
"text": "C'est une erreur systématique due à un échantillon non représentatif de la population."
}
},
{
"@type": "Question",
"name": "Quels sont les signes d'une autocorrélation ?",
"position": 10,
"acceptedAnswer": {
"@type": "Answer",
"text": "Des résidus corrélés dans le temps, souvent détectés par le test de Durbin-Watson."
}
},
{
"@type": "Question",
"name": "Comment éviter les biais dans les modèles ?",
"position": 11,
"acceptedAnswer": {
"@type": "Answer",
"text": "En s'assurant que l'échantillon est représentatif et en utilisant des méthodes de validation."
}
},
{
"@type": "Question",
"name": "Quelles pratiques pour une bonne collecte de données ?",
"position": 12,
"acceptedAnswer": {
"@type": "Answer",
"text": "Utiliser des protocoles standardisés et s'assurer de la qualité et de la fiabilité des données."
}
},
{
"@type": "Question",
"name": "Comment choisir les bonnes variables ?",
"position": 13,
"acceptedAnswer": {
"@type": "Answer",
"text": "En se basant sur la théorie, des études antérieures et des tests de significativité."
}
},
{
"@type": "Question",
"name": "Quelles sont les bonnes pratiques de modélisation ?",
"position": 14,
"acceptedAnswer": {
"@type": "Answer",
"text": "Utiliser des diagnostics appropriés, tester les hypothèses et valider le modèle sur des données nouvelles."
}
},
{
"@type": "Question",
"name": "Comment éviter le surajustement ?",
"position": 15,
"acceptedAnswer": {
"@type": "Answer",
"text": "En utilisant des techniques de validation croisée et en limitant la complexité du modèle."
}
},
{
"@type": "Question",
"name": "Comment corriger l'hétéroscédasticité ?",
"position": 16,
"acceptedAnswer": {
"@type": "Answer",
"text": "En utilisant des transformations de données ou des modèles de régression robustes."
}
},
{
"@type": "Question",
"name": "Quelles méthodes pour traiter la multicolinéarité ?",
"position": 17,
"acceptedAnswer": {
"@type": "Answer",
"text": "On peut utiliser la sélection de variables, la régularisation ou l'analyse en composantes principales."
}
},
{
"@type": "Question",
"name": "Comment améliorer un modèle économétrique ?",
"position": 18,
"acceptedAnswer": {
"@type": "Answer",
"text": "En ajoutant des variables pertinentes, en transformant les données ou en utilisant des modèles non linéaires."
}
},
{
"@type": "Question",
"name": "Qu'est-ce que la régularisation ?",
"position": 19,
"acceptedAnswer": {
"@type": "Answer",
"text": "C'est une technique pour prévenir le surajustement en ajoutant une pénalité aux coefficients."
}
},
{
"@type": "Question",
"name": "Comment utiliser des modèles de séries temporelles ?",
"position": 20,
"acceptedAnswer": {
"@type": "Answer",
"text": "Pour analyser des données chronologiques et prévoir des tendances futures à l'aide de lissage."
}
},
{
"@type": "Question",
"name": "Quelles sont les conséquences d'un modèle mal spécifié ?",
"position": 21,
"acceptedAnswer": {
"@type": "Answer",
"text": "Des prévisions inexactes, des décisions erronées et une mauvaise interprétation des résultats."
}
},
{
"@type": "Question",
"name": "Quels risques d'une autocorrélation non traitée ?",
"position": 22,
"acceptedAnswer": {
"@type": "Answer",
"text": "Elle peut conduire à des estimations biaisées et à des tests statistiques non fiables."
}
},
{
"@type": "Question",
"name": "Comment la multicolinéarité affecte-t-elle les résultats ?",
"position": 23,
"acceptedAnswer": {
"@type": "Answer",
"text": "Elle rend difficile l'évaluation de l'impact individuel des variables sur la variable dépendante."
}
},
{
"@type": "Question",
"name": "Quelles erreurs peuvent survenir dans l'interprétation des résultats ?",
"position": 24,
"acceptedAnswer": {
"@type": "Answer",
"text": "Des conclusions hâtives, des généralisations inappropriées et des politiques mal orientées."
}
},
{
"@type": "Question",
"name": "Quels effets d'un échantillonnage biaisé ?",
"position": 25,
"acceptedAnswer": {
"@type": "Answer",
"text": "Il peut fausser les résultats et mener à des recommandations inappropriées."
}
},
{
"@type": "Question",
"name": "Quels facteurs influencent la sélection des variables ?",
"position": 26,
"acceptedAnswer": {
"@type": "Answer",
"text": "La théorie économique, la disponibilité des données et les objectifs de recherche."
}
},
{
"@type": "Question",
"name": "Comment la taille de l'échantillon affecte-t-elle les résultats ?",
"position": 27,
"acceptedAnswer": {
"@type": "Answer",
"text": "Un échantillon trop petit peut entraîner des estimations instables et des biais."
}
},
{
"@type": "Question",
"name": "Quels sont les risques d'une mauvaise collecte de données ?",
"position": 28,
"acceptedAnswer": {
"@type": "Answer",
"text": "Des données inexactes peuvent fausser les résultats et compromettre la validité du modèle."
}
},
{
"@type": "Question",
"name": "Comment les variables omises affectent-elles le modèle ?",
"position": 29,
"acceptedAnswer": {
"@type": "Answer",
"text": "Elles peuvent introduire un biais et fausser les relations estimées entre les variables."
}
},
{
"@type": "Question",
"name": "Quels sont les impacts d'une mauvaise spécification du modèle ?",
"position": 30,
"acceptedAnswer": {
"@type": "Answer",
"text": "Des prévisions erronées et des décisions basées sur des analyses incorrectes."
}
}
]
}
]
}
Lesion locations of post-stroke depression (PSD) mapped to a depression circuit which centered by the left dorsolateral prefrontal cortex (DLPFC). However, it remains unknown whether the compensatory ...
Rs-fMRI data were collected from 82 non-depressed stroke patients (Stroke), 39 PSD patients and 74 healthy controls (HC). We tested the existence of depression circuit, examined PSD-related alteration...
We found that: 1) the left DLPFC showed significantly stronger connectivity to lesions of PSD than Stroke group; 2) in comparison to both Stroke and HC groups, PSD exhibited increased connectivity wit...
Longitudinal studies are required to explore the alterations of depression circuit in PSD as the disease progress....
PSD underwent specific alterations in depression circuit, which may help to establish objective imaging markers for early diagnosis and interventions of the disease....
Mood disturbances have historically remained a core criterion in diagnosing major depressive episode. DSMs have illustrated this criterion with depressed, hopeless, discouraged, cheerless, and irritab...
The current study used a nationally representative sample of U.S. adults with unipolar major depressive disorder to study the association between specific forms of mood disturbances to depression seve...
Cheerless and hopeless mood were associated with depression severity. Hopeless and irritable mood were associated with depression chronicity. Different forms of mood disturbance showed differential re...
The relations between different forms of mood disturbances and various aspects of depression are nuanced. Theoretically, these relations highlight the potential utility in acknowledging the complexity...
With almost one-third of patients with major depression not adequately responsive to treatments, the management of treatment-resistant depression (TRD) has continued to be challenging. Recently, an es...
In the STAR*D study, the efficacy of treatments for major depression was examined. It was found that, while many responded to the initial antidepressant treatment, only 30% of participants achieved co...
Depressive disorders encompass a spectrum of diagnoses and are more common in women and transgender individuals. Diagnosis involves thorough history-taking and exclusion of underlying medical disorder...
To review and summarize the literature published between 1 January 2020 and 30 June 2022, on the prevalence, risk factors and impact of depression in transplant population....
Depression is common in transplantation candidates and recipients, with a prevalence up to 85.8% in kidney recipients. Multiple studies have indicated after transplantation depression correlates with ...
Depression is a common finding in transplant population. More research is needed to understand the biological substrate and risk factors and to develop effective treatment interventions....
The goal of this study was to explore the coping strategies of depression sufferers that have worked for them based on the study of an online depression community....
We conducted a thematic narrative analysis of 120 stories posted by the members in the largest online depression community in China. MaxQDA version 18 was used to code the data, and the analytic appro...
The study found that the coping strategies mainly include self-reconciliation (e.g., perceiving/accepting feelings, accepting the present self, and holding hope for the future), actions (recreational ...
The findings revealed the coping strategies that were helpful and examined how they functioned for the affected members, which make up for the lack of attention to the individual experiences of depres...
Evidence-based treatments for adult depression include psychotherapy and pharmacotherapy, yet little is known about how baseline depression severity moderates treatment outcome....
We aimed to compare the effects of psychotherapy and pharmacotherapy for adult depression and to examine the association between baseline depression severity and treatment outcome, converting multiple...
We conducted systematic searches in bibliographical databases up to September 2022 to identify randomized controlled trials (RCTs) in which psychotherapy was compared with pharmacotherapy in the treat...
We identified 65 RCTs including 7250 participants for the meta-analyses and 56 RCTs including 5548 participants for the meta-regression. We found no significant difference between psychotherapy and ph...
Limitations included the low quality of the included studies, and the omission of long-term effects and within-study variability....
We found no indication for a moderation effect of baseline depression severity on the relative effects of psychotherapy and pharmacotherapy. Thus, other factors such as availability and patients' pref...