Department of Neuromuscular Research, National Center of Neurology and Psychiatry (NCNP), National Institute of Neuroscience, 4-1-1 Ogawahigashi, Tokyo 187-8502, Japan; Medical Genome Center, NCNP, Tokyo, Kodaira, Japan. Electronic address: nishino@ncnp.go.jp.
INSERM, GIN-U1216, CHU Grenoble Alpes, Grenoble Institut Neurosciences, University Grenoble Alpes, Bat EJ Safra, Chemin Fortuné Ferrini, La Tronche, Grenoble, France.
INSERM, GIN-U1216, CHU Grenoble Alpes, Grenoble Institut Neurosciences, University Grenoble Alpes, Bat EJ Safra, Chemin Fortuné Ferrini, La Tronche, Grenoble, France.
Department of Neuromuscular Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 187-8502 Tokyo, Japan; Department of Genome Medicine Development, Medical Genome Center, National Center of Neurology and Psychiatry, 187-8551 Tokyo, Japan.
From the Department of Learning, Informatics and Medical Education, Karolinska Institutet; Function Area Occupational Therapy and Physical Therapy, Allied Health Professionals Function, Karolinska University Hospital, Department of Neurobiology, Care Science and Society, Division of Physiotherapy and Department of Medicine, Karolinska Institutet; Division of Rheumatology, Rheumatology Unit, Department of Medicine, Karolinska Institutet, Solna, Sweden; Division of Rheumatology, Department of Medicine, Johns Hopkins University, Baltimore, Maryland, USA; Division of Rheumatology, Department of Internal Medicine, Medical Research Center, College of Medicine, Department of Molecular Medicine and Biopharmaceutical Sciences, Seoul National University, Seoul, Korea; Division of Rheumatology, Fiona Stanley Hospital, Institute for Immunology and Infectious Diseases, Murdoch University, Perth; The Notre Dame University Fremantle, Fremantle, Australia; Amsterdam UMC, University of Amsterdam, Department of Neurology, Amsterdam Neuroscience, Amsterdam, the Netherlands; Center for Global Health, University of Ottawa, Ottawa, Ontario, Canada.
M. Regardt, PhD, Occupational Therapist, Department of Learning, Informatics and Medical Education, Karolinska Institutet, and Function Area Occupational Therapy and Physical Therapy, Allied Health Professionals Function, Karolinska University Hospital; C.A. Mecoli, MD, Division of Rheumatology, Department of Medicine, Johns Hopkins University; J.K. Park, MD, PhD, Division of Rheumatology, Department of Internal Medicine, Seoul National University Hospital; I. de Groot, Patient Research Partner; C. Sarver, Patient Research Partner; M. Needham, MD, Division of Rheumatology, Fiona Stanley Hospital, Institute for Immunology and Infectious Diseases, Murdoch University, and The Notre Dame University; M. de Visser, MD, PhD, Amsterdam UMC, University of Amsterdam, Department of Neurology, Amsterdam Neuroscience; B. Shea, MSN, Center for Global Health, University of Ottawa; C.O. Bingham III, MD, Division of Rheumatology, Department of Medicine, Johns Hopkins University; I.E. Lundberg, MD, PhD, Division of Rheumatology, Rheumatology Unit, Department of Medicine, Karolinska Institutet; Y.W. Song, MD, PhD, Division of Rheumatology, Department of Internal Medicine, Medical Research Center, College of Medicine, Department of Molecular Medicine and Biopharmaceutical Sciences, Seoul National University; L. Christopher-Stine, MD, Division of Rheumatology, Department of Medicine, Johns Hopkins University; H. Alexanderson, PhD, Physiotherapist, Department of Neurobiology, Care Science and Society, Division of Physiotherapy and Department of Medicine Solna, Karolinska Institutet, and Function Area Occupational Therapy and Physical Therapy, Allied Health Professionals Function, Karolinska University Hospital. M. Regardt and Dr. C. Mecoli are co-first authors.
Department of Neuromuscular Research, National Center of Neurology and Psychiatry (NCNP), National Institute of Neuroscience, 4-1-1 Ogawahigashi, Tokyo 187-8502, Japan; Medical Genome Center, NCNP, Tokyo, Kodaira, Japan; Department of Pediatrics, Showa General Hospital, Tokyo, Kodaira, Japan.
INSERM, GIN-U1216, CHU Grenoble Alpes, Grenoble Institut Neurosciences, University Grenoble Alpes, Bat EJ Safra, Chemin Fortuné Ferrini, La Tronche, Grenoble, France.
INSERM, GIN-U1216, CHU Grenoble Alpes, Grenoble Institut Neurosciences, University Grenoble Alpes, Bat EJ Safra, Chemin Fortuné Ferrini, La Tronche, Grenoble, France. isabelle.marty@univ-grenoble-alpes.fr.
Neuromuscular Morphology Unit, Myology Institute, Groupe Hospitalier Universitaire La Pitié-Salpêtrière, Paris, France. matteo.garibaldi@uniroma1.it.
Unit of Neuromuscular Diseases, Neuromuscular Disease Centre, Department of Neurology Mental Health and Sensory Organs (NESMOS), Faculty of Medicine and Psychology, SAPIENZA University of Rome, Sant'Andrea Hospital, Via di Grottarossa 1035-1039, 00189, Rome, Italy. matteo.garibaldi@uniroma1.it.
Service Neurologie Médicale, Centre de Référence Maladies Neuromusculaire Paris-Est-Ile de France, CHU Raymond-Poincaré Paris Ouest, Garches, France.
U1179 UVSQ-INSERM Handicap Neuromusculaire: Physiologie, Biothérapie et Pharmacologie appliquées, UFR des sciences de la santé Simone Veil, Université Versailles-Saint-Quentin-en-Yvelines, Versailles, France.
Unit of Neuromuscular Diseases, Neuromuscular Disease Centre, Department of Neurology Mental Health and Sensory Organs (NESMOS), Faculty of Medicine and Psychology, SAPIENZA University of Rome, Sant'Andrea Hospital, Via di Grottarossa 1035-1039, 00189, Rome, Italy.
Female gynecological organ dysfunction can cause infertility and psychological distress, decreasing the quality of life of affected women. Incidence is constantly increasing due to growing rates of ca...
Extracellular vesicles (EVs), acting as an important ingredient of intercellular communication through paracrine actions, have gained tremendous attention in the field of tissue engineering (TE). More...
Machine learning (ML) and artificial intelligence have accelerated scientific discovery, augmented clinical practice, and deepened fundamental understanding of many biological phenomena. ML technologi...
Tissue engineers have long worked to develop cells, biomaterial matrices, and signaling molecules designed to restore or promote the repair of lost or damaged tissue. Senescent cells (SnCs), that is, ...
Biofabrication of tissues requires sourcing appropriate combinations of cells, and then arranging those cells into a functionally-useful construct. Recently, organoids with diverse cell populations ha...
Significant attention has been drawn in recent years to develop porous scaffolds for tissue engineering. In general, porous scaffolds are used for non-load bearing applications. However, various metal...
Tissue engineering (TE) has made a revolution in repairing, replacing, or regenerating tissues or organs, but it has still a long way ahead. The mechanical properties along with suitable physicochemic...
Many soft tissues of the human body possess hierarchically anisotropic structures, exhibiting orientation-specific mechanical properties and biological functionality. Hydrogels have been proposed as p...
Nanomaterial composition, morphology, and mechanical performance are critical parameters for tissue engineering. Within this rapidly expanding space, tubular nanomaterials (TNs), including carbon nano...
The gastrointestinal and genitourinary tracts share several similarities. Primarily, these tissues are composed of hollow structures lined by an epithelium through which materials need to flow with th...