Titre : Cellules HepG2

Cellules HepG2 : Questions médicales fréquentes

Termes MeSH sélectionnés :

Spatial Regression
{ "@context": "https://schema.org", "@graph": [ { "@type": "MedicalWebPage", "name": "Cellules HepG2 : Questions médicales les plus fréquentes", "headline": "Cellules HepG2 : Comprendre les symptômes, diagnostics et traitements", "description": "Guide complet et accessible sur les Cellules HepG2 : explications, diagnostics, traitements et prévention. Information médicale validée destinée aux patients.", "datePublished": "2024-02-11", "dateModified": "2025-05-06", "inLanguage": "fr", "medicalAudience": [ { "@type": "MedicalAudience", "name": "Grand public", "audienceType": "Patient", "healthCondition": { "@type": "MedicalCondition", "name": "Cellules HepG2" }, "suggestedMinAge": 18, "suggestedGender": "unisex" }, { "@type": "MedicalAudience", "name": "Médecins", "audienceType": "Physician", "geographicArea": { "@type": "AdministrativeArea", "name": "France" } }, { "@type": "MedicalAudience", "name": "Chercheurs", "audienceType": "Researcher", "geographicArea": { "@type": "AdministrativeArea", "name": "International" } } ], "reviewedBy": { "@type": "Person", "name": "Dr Olivier Menir", "jobTitle": "Expert en Médecine", "description": "Expert en Médecine, Optimisation des Parcours de Soins et Révision Médicale", "url": "/static/pages/docteur-olivier-menir.html", "alumniOf": { "@type": "EducationalOrganization", "name": "Université Paris Descartes" } }, "isPartOf": { "@type": "MedicalWebPage", "name": "Hépatocytes", "url": "https://questionsmedicales.fr/mesh/D022781", "about": { "@type": "MedicalCondition", "name": "Hépatocytes", "code": { "@type": "MedicalCode", "code": "D022781", "codingSystem": "MeSH" }, "identifier": { "@type": "PropertyValue", "propertyID": "MeSH Tree", "value": "A11.436.348" } } }, "about": { "@type": "MedicalCondition", "name": "Cellules HepG2", "alternateName": "Hep G2 Cells", "code": { "@type": "MedicalCode", "code": "D056945", "codingSystem": "MeSH" } }, "author": [ { "@type": "Person", "name": "Wilson de Melo Cruvinel", "url": "https://questionsmedicales.fr/author/Wilson%20de%20Melo%20Cruvinel", "affiliation": { "@type": "Organization", "name": "School of Medical and Life Sciences, Escola de Ciências Médicas e da Vida, Pontifícia Universidade Católica de Goiás (PUC GOIÁS), Avenida Universitária 1.440, Setor Universitário, Goiânia, GO, 74605-010, Brazil. melocruvinel@gmail.com." } }, { "@type": "Person", "name": "Paulo Luiz Carvalho Francescantonio", "url": "https://questionsmedicales.fr/author/Paulo%20Luiz%20Carvalho%20Francescantonio", "affiliation": { "@type": "Organization", "name": "School of Medical and Life Sciences, Escola de Ciências Médicas e da Vida, Pontifícia Universidade Católica de Goiás (PUC GOIÁS), Avenida Universitária 1.440, Setor Universitário, Goiânia, GO, 74605-010, Brazil." } }, { "@type": "Person", "name": "Alessandra Dellavance", "url": "https://questionsmedicales.fr/author/Alessandra%20Dellavance", "affiliation": { "@type": "Organization", "name": "Research and Development Division, Fleury Medicine and Health Laboratories, São Paulo, Brazil." } }, { "@type": "Person", "name": "Luis Eduardo Coelho Andrade", "url": "https://questionsmedicales.fr/author/Luis%20Eduardo%20Coelho%20Andrade", "affiliation": { "@type": "Organization", "name": "Rheumatology Division, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil. luis.andrade@unifesp.br." } }, { "@type": "Person", "name": "Antônio Carlos Ximenes", "url": "https://questionsmedicales.fr/author/Ant%C3%B4nio%20Carlos%20Ximenes", "affiliation": { "@type": "Organization", "name": "Hospital Geral de Goiânia Alberto Rassi, Goiânia, GO, Brazil." } } ], "citation": [ { "@type": "ScholarlyArticle", "name": "Spatial variations and predictors of overweight/obesity among under-five children in Ethiopia: A geographically weighted regression analysis of the 2019 Ethiopian Mini Demographic and Health Survey.", "datePublished": "2024-10-14", "url": "https://questionsmedicales.fr/article/39401190", "identifier": { "@type": "PropertyValue", "propertyID": "DOI", "value": "10.1371/journal.pone.0312025" } }, { "@type": "ScholarlyArticle", "name": "Risk exposure factors influencing the frequency of road crashes during the COVID-19 pandemic in Ciudad Juarez, Mexico. A negative binomial spatial regression model.", "datePublished": "2023-03-16", "url": "https://questionsmedicales.fr/article/36927303", "identifier": { "@type": "PropertyValue", "propertyID": "DOI", "value": "10.1080/17457300.2023.2188469" } }, { "@type": "ScholarlyArticle", "name": "Spatial trends and projections of chronic malnutrition among children under 5 years of age in Ethiopia from 2011 to 2019: a geographically weighted regression analysis.", "datePublished": "2022-07-05", "url": "https://questionsmedicales.fr/article/35790980", "identifier": { "@type": "PropertyValue", "propertyID": "DOI", "value": "10.1186/s41043-022-00309-7" } }, { "@type": "ScholarlyArticle", "name": "Quantifying the spatial nonstationary response of influencing factors on ecosystem health based on the geographical weighted regression (GWR) model: an example in Inner Mongolia, China, from 1995 to 2020.", "datePublished": "2023-05-16", "url": "https://questionsmedicales.fr/article/37193792", "identifier": { "@type": "PropertyValue", "propertyID": "DOI", "value": "10.1007/s11356-023-26915-4" } }, { "@type": "ScholarlyArticle", "name": "Geospatial pattern of level of minimum acceptable diet and its determinants among children aged 6-23 months in Ethiopia. Spatial and multiscale geographically weighted regression analysis.", "datePublished": "2024-06-19", "url": "https://questionsmedicales.fr/article/38962777", "identifier": { "@type": "PropertyValue", "propertyID": "DOI", "value": "10.3389/fpubh.2024.1348755" } } ], "breadcrumb": { "@type": "BreadcrumbList", "itemListElement": [ { "@type": "ListItem", "position": 1, "name": "questionsmedicales.fr", "item": "https://questionsmedicales.fr" }, { "@type": "ListItem", "position": 2, "name": "Cellules", "item": "https://questionsmedicales.fr/mesh/D002477" }, { "@type": "ListItem", "position": 3, "name": "Cellules épithéliales", "item": "https://questionsmedicales.fr/mesh/D004847" }, { "@type": "ListItem", "position": 4, "name": "Hépatocytes", "item": "https://questionsmedicales.fr/mesh/D022781" }, { "@type": "ListItem", "position": 5, "name": "Cellules HepG2", "item": "https://questionsmedicales.fr/mesh/D056945" } ] } }, { "@type": "MedicalWebPage", "name": "Article complet : Cellules HepG2 - Questions et réponses", "headline": "Questions et réponses médicales fréquentes sur Cellules HepG2", "description": "Une compilation de questions et réponses structurées, validées par des experts médicaux.", "datePublished": "2025-05-16", "inLanguage": "fr", "hasPart": [ { "@type": "MedicalWebPage", "name": "Diagnostic", "headline": "Diagnostic sur Cellules HepG2", "description": "Comment identifier les cellules HepG2 en laboratoire ?\nQuelles techniques sont utilisées pour étudier les HepG2 ?", "url": "https://questionsmedicales.fr/mesh/D056945?mesh_terms=Spatial+Regression&page=3#section-diagnostic" }, { "@type": "MedicalWebPage", "name": "Symptômes", "headline": "Symptômes sur Cellules HepG2", "description": "Les cellules HepG2 présentent-elles des symptômes ?\nQuels marqueurs sont associés aux cellules HepG2 ?", "url": "https://questionsmedicales.fr/mesh/D056945?mesh_terms=Spatial+Regression&page=3#section-symptômes" }, { "@type": "MedicalWebPage", "name": "Prévention", "headline": "Prévention sur Cellules HepG2", "description": "Les cellules HepG2 peuvent-elles aider à prévenir des maladies ?\nComment les HepG2 contribuent-elles à la recherche préventive ?", "url": "https://questionsmedicales.fr/mesh/D056945?mesh_terms=Spatial+Regression&page=3#section-prévention" }, { "@type": "MedicalWebPage", "name": "Traitements", "headline": "Traitements sur Cellules HepG2", "description": "Peut-on utiliser HepG2 pour tester des médicaments ?\nComment les HepG2 aident-elles à développer des traitements ?", "url": "https://questionsmedicales.fr/mesh/D056945?mesh_terms=Spatial+Regression&page=3#section-traitements" }, { "@type": "MedicalWebPage", "name": "Complications", "headline": "Complications sur Cellules HepG2", "description": "Quelles complications peuvent être étudiées avec HepG2 ?\nLes HepG2 aident-elles à comprendre les complications du foie ?", "url": "https://questionsmedicales.fr/mesh/D056945?mesh_terms=Spatial+Regression&page=3#section-complications" }, { "@type": "MedicalWebPage", "name": "Facteurs de risque", "headline": "Facteurs de risque sur Cellules HepG2", "description": "Quels facteurs de risque sont étudiés avec HepG2 ?\nComment HepG2 aide à identifier des facteurs de risque ?", "url": "https://questionsmedicales.fr/mesh/D056945?mesh_terms=Spatial+Regression&page=3#section-facteurs de risque" } ] }, { "@type": "FAQPage", "mainEntity": [ { "@type": "Question", "name": "Comment identifier les cellules HepG2 en laboratoire ?", "position": 1, "acceptedAnswer": { "@type": "Answer", "text": "Les cellules HepG2 peuvent être identifiées par leur morphologie et leur marqueur spécifique, l'alpha-fœtoprotéine." } }, { "@type": "Question", "name": "Quelles techniques sont utilisées pour étudier les HepG2 ?", "position": 2, "acceptedAnswer": { "@type": "Answer", "text": "Les techniques incluent la culture cellulaire, la microscopie et les tests de viabilité cellulaire." } }, { "@type": "Question", "name": "Les cellules HepG2 présentent-elles des symptômes ?", "position": 3, "acceptedAnswer": { "@type": "Answer", "text": "Les cellules HepG2 ne présentent pas de symptômes, car elles sont des cellules in vitro." } }, { "@type": "Question", "name": "Quels marqueurs sont associés aux cellules HepG2 ?", "position": 4, "acceptedAnswer": { "@type": "Answer", "text": "Les cellules HepG2 expriment des marqueurs comme l'alpha-fœtoprotéine et des enzymes hépatiques." } }, { "@type": "Question", "name": "Les cellules HepG2 peuvent-elles aider à prévenir des maladies ?", "position": 5, "acceptedAnswer": { "@type": "Answer", "text": "Elles sont utilisées pour étudier les effets préventifs de composés sur les maladies hépatiques." } }, { "@type": "Question", "name": "Comment les HepG2 contribuent-elles à la recherche préventive ?", "position": 6, "acceptedAnswer": { "@type": "Answer", "text": "Elles permettent d'analyser les effets de l'alimentation et des toxines sur la santé hépatique." } }, { "@type": "Question", "name": "Peut-on utiliser HepG2 pour tester des médicaments ?", "position": 7, "acceptedAnswer": { "@type": "Answer", "text": "Oui, les cellules HepG2 sont souvent utilisées pour évaluer la toxicité et l'efficacité des médicaments." } }, { "@type": "Question", "name": "Comment les HepG2 aident-elles à développer des traitements ?", "position": 8, "acceptedAnswer": { "@type": "Answer", "text": "Elles permettent d'étudier les mécanismes d'action des médicaments sur le foie et d'identifier des cibles thérapeutiques." } }, { "@type": "Question", "name": "Quelles complications peuvent être étudiées avec HepG2 ?", "position": 9, "acceptedAnswer": { "@type": "Answer", "text": "Les complications liées aux maladies hépatiques, comme la cirrhose et le cancer du foie, peuvent être modélisées." } }, { "@type": "Question", "name": "Les HepG2 aident-elles à comprendre les complications du foie ?", "position": 10, "acceptedAnswer": { "@type": "Answer", "text": "Oui, elles sont essentielles pour étudier les mécanismes des complications hépatiques." } }, { "@type": "Question", "name": "Quels facteurs de risque sont étudiés avec HepG2 ?", "position": 11, "acceptedAnswer": { "@type": "Answer", "text": "Les facteurs de risque comme l'alcool, les médicaments et les toxines sont souvent analysés." } }, { "@type": "Question", "name": "Comment HepG2 aide à identifier des facteurs de risque ?", "position": 12, "acceptedAnswer": { "@type": "Answer", "text": "Elles permettent d'évaluer l'impact de divers agents sur la santé des cellules hépatiques." } } ] } ] }

Sources (10000 au total)

Spatial variations and predictors of overweight/obesity among under-five children in Ethiopia: A geographically weighted regression analysis of the 2019 Ethiopian Mini Demographic and Health Survey.

Overweight/ obesity among under-five children is an emerging public health issue of the twenty-first century. Due to the quick nutritional and epidemiological change, non-communicable diseases, premat... A total weighted sample of 3,609 under-five children was included in the study. A cross-sectional study was conducted using a nationally representative sample of the 2019 Ethiopia Mini Demographic and... The spatial distribution of overweight/obesity among under-five children in Ethiopia was clustered (Global Moran's I = 0.27, p-value<0.001). The significant hot spot areas or higher rates of childhood... Overweight or obesity among under-five children show spatial variations across Ethiopian regions. GWR analysis identifies cesarean section, wealth index, urban residence, and child sex as significant ...

Risk exposure factors influencing the frequency of road crashes during the COVID-19 pandemic in Ciudad Juarez, Mexico. A negative binomial spatial regression model.

The article aims to investigate the influence of risk exposure factors on the frequency of road crashes from January to August 2020 in Ciudad Juarez, Mexico. It is a longitudinal study with four data ...

Spatial trends and projections of chronic malnutrition among children under 5 years of age in Ethiopia from 2011 to 2019: a geographically weighted regression analysis.

Undernutrition is a serious global health issue, and stunting is a key indicator of children's nutritional status which results from long-term deprivation of basic needs. Ethiopia, the largest and mos... The Ethiopia Demographic and Health Surveys (EDHS) data from 2011, 2016, and 2019 were examined using a geostatistical technique that took into account spatial autocorrelation. Ordinary kriging was us... Overall, stunting prevalence was decreased from 44.42% [95%, CI: 0.425-0.444] in 2011 to 36.77% [95%, CI: 0.349-0.375] in 2019. Across three waves of EDHS, clusters with a high prevalence of stunting ... In Ethiopia, substantial progress has been made in decreasing stunting among children under the age of 5 years; although disparities varied in some areas and districts between surveys, the pattern gen...

Quantifying the spatial nonstationary response of influencing factors on ecosystem health based on the geographical weighted regression (GWR) model: an example in Inner Mongolia, China, from 1995 to 2020.

The identification of ecosystem health and its influencing factors is crucial to the sustainable management of ecosystems and ecosystem restoration. Although numerous studies on ecosystem health have ...

Geospatial pattern of level of minimum acceptable diet and its determinants among children aged 6-23 months in Ethiopia. Spatial and multiscale geographically weighted regression analysis.

Despite prior progress and the proven benefits of optimal feeding practices, improving child dietary intake in developing countries like Ethiopia remains challenging. In Ethiopia, over 89% of children... Spatial and multiscale geographically weighted regression analysis was conducted among 1,427 weighted sample children aged 6-23 months. ArcGIS Pro and SatScan version 9.6 were used to map the visual p... Overall, 89.56% (95CI: 87.85-91.10%) of children aged 6-23 months failed to achieve the recommended minimum acceptable diet. Significant spatial clustering was detected in the Somali, Afar regions, an... Level of minimum acceptable diet among children in Ethiopia varies geographically. Therefore, to improve child feeding practices in Ethiopia, it is highly recommended to deploy additional resources to...

Improved Daily Spatial Precipitation Estimation by Merging Multi-Source Precipitation Data Based on the Geographically Weighted Regression Method: A Case Study of Taihu Lake Basin, China.

Accurately estimating the spatial and temporal distribution of precipitation is crucial for hydrological modeling. However, precipitation products based on a single source have their advantages and di...

Trend, spatial distribution, and factors associated with HIV testing uptake among pregnant women in Ethiopia, based on 2005-2016 Ethiopia demographic and health survey: A multivariate decomposition analysis and geographically weighted regression.

HIV testing during pregnancy is an integral component and first step of prevention for mother to child transmission, initiation of antiretroviral treatment and diagnosis of HIV/AIDS. However, Ethiopia... The study was based on three consecutive demographic and health survey in Ethiopia. A total weighted sample of 13,020 women who gave birth within 2 year proceeding each survey year was included in eac... HIV testing uptake among pregnant women has significantly increased from 0.51% in 2005 to 32.4% in 2016 with 2.9% annual rate of increment in Ethiopia. About 75.9% of the overall increase in HIV testi... Over all, there has been a substantial increase in HIV testing uptake among pregnant women overtime in Ethiopia, but it still far away from achieving the 2025 HIV testing targets. Knowledge of Mother ...

Geographical variation in hotspots of stunting among under-five children in Ethiopia: A geographically weighted regression and multilevel robust Poisson regression analysis.

Childhood stunting is a global public health concern, associated with both short and long-term consequences, including high child morbidity and mortality, poor development and learning capacity, incre... The current analysis was based on data from the 2019 mini Ethiopian Demographic and Health Survey (EDHS). A total of 5,490 children under the age of five were included in the weighted sample. Descript... The prevalence of stunting was 33.58% (95%CI: 32.34%, 34.84%) with a clustered geographic pattern (Moran's I = 0.40, p<0.001). significant hotspot areas of stunting were identified in the west and sou... In Ethiopia, under-five children suffering from stunting have been found to exhibit a spatially clustered pattern. Maternal education, wealth index, birth interval and child age were determining facto...

Using geographically weighted regression analysis to assess predictors of home birth hot spots in Ethiopia.

Annually, 30 million women in Africa become pregnant, with the majority of deliveries taking place at home without the assistance of skilled healthcare personnel. In Ethiopia the proportion of home bi... This study used secondary data from the 2019 Ethiopian Mini Demographic and Health Survey. First, Moran's I and Getis-OrdGi* statistics were used to examine the geographic variation in home births. Fu... According to this result, Somalia, Afar, and the SNNPR region were shown to be high risk locations for home births. Women from rural residence, women having no-education, poorest wealth index, Muslim ... The spatial regression revealed women from rural resident, women having no-education, women being in the household with a poorest wealth index, women with Muslim religion follower, and women having no...