Effects of an FcγRIIA polymorphism on leukocyte gene expression and cytokine responses to anti-CD3 and anti-CD28 antibodies.
Adolescent
Adult
Aged
Alleles
Antibodies
/ pharmacology
CD28 Antigens
/ antagonists & inhibitors
CD3 Complex
/ antagonists & inhibitors
Child
Genotype
Heterozygote
Homozygote
Humans
Interferon-gamma
/ blood
Interleukin-12
/ blood
Interleukin-2
/ blood
Leukocytes
/ immunology
Middle Aged
Polymorphism, Genetic
Receptors, IgG
/ genetics
T-Lymphocytes
/ metabolism
Transcriptome
/ immunology
Tumor Necrosis Factor-alpha
/ blood
Young Adult
Journal
Genes and immunity
ISSN: 1476-5470
Titre abrégé: Genes Immun
Pays: England
ID NLM: 100953417
Informations de publication
Date de publication:
07 2019
07 2019
Historique:
received:
21
12
2017
accepted:
23
05
2018
revised:
21
05
2018
pubmed:
7
7
2018
medline:
25
1
2020
entrez:
7
7
2018
Statut:
ppublish
Résumé
The low affinity Fcγ receptor, FcγRIIA, harbors a common missense mutation, rs1801274 (G>A, Arg131His) that modifies binding affinity to human IgG2 and mouse IgG1 antibodies and is associated with increased risk of autoimmune disease. Despite the important role of the Arg131His variant, little is understood about heterozygous genotype effects on global gene expression and cytokine production during an FcγR-dependent response. To address this gap in knowledge, we treated human whole-blood samples from 130 individuals with mouse IgG1 anti-CD3 and anti-CD28 antibodies and characterized the genome-wide gene expression profiles and cytokine production among individuals stratified by rs1801274 genotype. Our analysis revealed that the levels of four cytokines (IFNγ, IL-12, IL-2, TNFα) and global gene expression patterns differed between all three genotype classes. Surprisingly, the heterozygotes showed suboptimal T cell activation compared to cells from individuals homozygous for the higher-affinity FcγRIIA allele (GG; Arg/Arg). The results of this study demonstrate that IgG response varies among all rs1801274 genotype classes and results in profound differences in both cytokine responses and gene expression patterns in blood leukocytes. Because even heterozygotes showed dampened global responses, our data may provide insight into the heterogeneity of outcomes in cytokine release assays and immunotherapy efficacy.
Identifiants
pubmed: 29977032
doi: 10.1038/s41435-018-0038-8
pii: 10.1038/s41435-018-0038-8
pmc: PMC8026236
mid: NIHMS1687760
doi:
Substances chimiques
Antibodies
0
CD28 Antigens
0
CD3 Complex
0
Fc gamma receptor IIA
0
Interleukin-2
0
Receptors, IgG
0
Tumor Necrosis Factor-alpha
0
Interleukin-12
187348-17-0
Interferon-gamma
82115-62-6
Types de publication
Journal Article
Research Support, N.I.H., Extramural
Langues
eng
Sous-ensembles de citation
IM
Pagination
462-472Subventions
Organisme : NIAID NIH HHS
ID : R01 AI125644
Pays : United States
Organisme : NHLBI NIH HHS
ID : R01 HL085197
Pays : United States
Organisme : NHLBI NIH HHS
ID : T32 HL007605
Pays : United States
Organisme : NIAID NIH HHS
ID : U19 AI095230
Pays : United States
Références
J Immunol. 1985 Dec;135(6):3882-6
pubmed: 2933454
Biostatistics. 2007 Jan;8(1):118-27
pubmed: 16632515
Cytokine. 2014 Apr;66(2):143-55
pubmed: 24412476
J Clin Oncol. 2003 Nov 1;21(21):3940-7
pubmed: 12975461
N Engl J Med. 2008 Apr 17;358(16):1682-91
pubmed: 18403759
Nucleic Acids Res. 2015 Apr 20;43(7):e47
pubmed: 25605792
J Clin Oncol. 2008 Apr 10;26(11):1789-96
pubmed: 18347005
Crit Care Med. 2011 Jun;39(6):1388-93
pubmed: 21317643
Blood. 2012 Jun 14;119(24):5640-9
pubmed: 22535666
J Allergy Clin Immunol. 2014 Jan;133(1):248-55.e1-10
pubmed: 23932459
Hum Immunol. 2006 Jul;67(7):479-91
pubmed: 16829303
Nat Genet. 2015 Dec;47(12):1457-1464
pubmed: 26502338
Ann Oncol. 2011 Jun;22(6):1302-1307
pubmed: 21109570
Clin Cancer Res. 2012 Jun 15;18(12):3478-86
pubmed: 22504044
Blood. 2012 Sep 27;120(13):2650-7
pubmed: 22885164
Bioinformatics. 2017 Feb 15;33(4):594-595
pubmed: 27742697
Nat Genet. 2015 Sep;47(9):979-986
pubmed: 26192919
Mol Biol Rep. 2013 Aug;40(8):4985-93
pubmed: 23649770
Nat Rev Immunol. 2014 Feb;14(2):94-108
pubmed: 24445665
Nat Genet. 2012 Jun 17;44(7):821-4
pubmed: 22706312
Bioinformatics. 2016 Oct 1;32(19):3047-8
pubmed: 27312411
Nat Genet. 2003 Jul;34(3):267-73
pubmed: 12808457
Immunity. 2014 Mar 20;40(3):436-50
pubmed: 24656047
Am J Hum Genet. 2012 Nov 2;91(5):839-48
pubmed: 23103226
BMC Med Res Methodol. 2012 Aug 01;12:112
pubmed: 22853196
Nat Genet. 2011 Nov 13;43(12):1241-6
pubmed: 22081228
Proc Natl Acad Sci U S A. 2005 Oct 25;102(43):15545-50
pubmed: 16199517
Genome Biol. 2014 Feb 03;15(2):R29
pubmed: 24485249
Cancer Sci. 2010 Sep;101(9):2048-53
pubmed: 20550522
Immunology. 1994 Dec;83(4):624-30
pubmed: 7875742
Bioinformatics. 2013 Jan 1;29(1):15-21
pubmed: 23104886
Pharmacogenomics. 2015;16(4):373-81
pubmed: 25823785
J Lipid Res. 2009 May;50(5):798-806
pubmed: 19124843
BMC Cancer. 2014 May 19;14:340
pubmed: 24884501
Cancer Cell. 2011 Jan 18;19(1):101-13
pubmed: 21251615
J Immunol. 1985 Mar;134(3):1498-502
pubmed: 3918101
PLoS One. 2015 Apr 07;10(4):e0122088
pubmed: 25848939
Blood. 2009 Apr 16;113(16):3716-25
pubmed: 19018092