5-HT2C receptor blockade reverses SSRI-associated basal ganglia dysfunction and potentiates therapeutic efficacy.


Journal

Molecular psychiatry
ISSN: 1476-5578
Titre abrégé: Mol Psychiatry
Pays: England
ID NLM: 9607835

Informations de publication

Date de publication:
12 2020
Historique:
received: 30 11 2016
accepted: 24 07 2018
revised: 13 07 2018
pubmed: 19 8 2018
medline: 15 5 2021
entrez: 19 8 2018
Statut: ppublish

Résumé

Serotonin (5-HT) selective reuptake inhibitors (SSRIs) are widely used in the treatment of depression and anxiety disorders, but responsiveness is uncertain and side effects often lead to discontinuation. Side effect profiles suggest that SSRIs reduce dopaminergic (DAergic) activity, but specific mechanistic insight is missing. Here we show in mice that SSRIs impair motor function by acting on 5-HT2C receptors in the substantia nigra pars reticulata (SNr), which in turn inhibits nigra pars compacta (SNc) DAergic neurons. SSRI-induced motor deficits can be reversed by systemic or SNr-localized 5-HT2C receptor antagonism. SSRIs induce SNr hyperactivity and SNc hypoactivity that can also be reversed by systemic 5-HT2C receptor antagonism. Optogenetic inhibition of SNc DAergic neurons mimics the motor deficits due to chronic SSRI treatment, whereas local SNr 5-HT2C receptor antagonism or optogenetic activation of SNc DAergic neurons reverse SSRI-induced motor deficits. Lastly, we find that 5-HT2C receptor antagonism potentiates the antidepressant and anxiolytic effects of SSRIs. Together our findings demonstrate opposing roles for 5-HT2C receptors in the effects of SSRIs on motor function and affective behavior, highlighting the potential benefits of 5-HT2C receptor antagonists for both reduction of motor side effects of SSRIs and augmentation of therapeutic antidepressant and anxiolytic effects.

Identifiants

pubmed: 30120415
doi: 10.1038/s41380-018-0227-x
pii: 10.1038/s41380-018-0227-x
pmc: PMC6378140
mid: NIHMS1500954
doi:

Substances chimiques

Receptor, Serotonin, 5-HT2C 0
Serotonin Uptake Inhibitors 0
Serotonin 333DO1RDJY
Dopamine VTD58H1Z2X

Types de publication

Journal Article Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

3304-3321

Subventions

Organisme : NIMH NIH HHS
ID : R01 MH068073
Pays : United States
Organisme : NIMH NIH HHS
ID : R01 MH099118
Pays : United States

Références

Trivedi MH, Rush AJ, Wisniewski SR, Nierenberg AA, Warden D, Ritz L, et al. Evaluation of outcomes with citalopram for depression using measurement-based care in STAR*D: implications for clinical practice. Am J Psychiatry. 2006;163:28–40.
pubmed: 16390886 doi: 10.1176/appi.ajp.163.1.28
Morelli E, Moore H, Rebello TJ, Gray N, Steele K, Esposito E, et al. Chronic 5-HT transporter blockade reduces DA signaling to elicit basal ganglia dysfunction. J Neurosci. 2011;31:15742–50.
pubmed: 22049417 pmcid: 3758550 doi: 10.1523/JNEUROSCI.2989-11.2011
Cassano P, Fava M. Tolerability issues during long-term treatment with antidepressants. Ann Clin Psychiatry. 2004;16:15–25.
pubmed: 15147109 doi: 10.1080/10401230490281618
Preskorn SH, Ross R, Stanga CY Selective serotonin reuptake inhibitors. In: Preskorn SH, Feighner HP, Stanga CY, Ross R (eds). Antidepressants: past, present and future. Springer: Berlin, 2004, pp. 241–62.
Settle EC Jr. Antidepressant drugs: disturbing and potentially dangerous adverse effects. J Clin Psychiatry. 1998;59(Suppl 16):25–30. discussion 40–22
pubmed: 9796863
Damsa C, Bumb A, Bianchi-Demicheli F, Vidailhet P, Sterck R, Andreoli A, et al. “Dopamine-dependent” side effects of selective serotonin reuptake inhibitors: a clinical review. J Clin Psychiatry. 2004;65:1064–8.
pubmed: 15323590 doi: 10.4088/JCP.v65n0806
Price J, Cole V, Goodwin GM. Emotional side-effects of selective serotonin reuptake inhibitors: qualitative study. Br J Psychiatry. 2009;195:211–7.
pubmed: 19721109 doi: 10.1192/bjp.bp.108.051110
Sansone RA, Sansone LA. SSRI-induced indifference. Psychiatry. 2010;7:14–18.
pubmed: 21103140 pmcid: 2989833
Di Matteo V, Di Giovanni G, Pierucci M, Esposito E. Serotonin control of central dopaminergic function: focus on in vivo microdialysis studies. Prog Brain Res. 2008;172:7–44.
pubmed: 18772026 doi: 10.1016/S0079-6123(08)00902-3
Di Giovanni G, Di Matteo V, Pierucci M, Esposito E. Serotonin-dopamine interaction: electrophysiological evidence. Prog Brain Res. 2008;172:45–71.
pubmed: 18772027 doi: 10.1016/S0079-6123(08)00903-5
Hawthorne JM, Caley CF. Extrapyramidal reactions associated with serotonergic antidepressants. Ann Pharmacother. 2015;49:1136–52.
pubmed: 26185277 doi: 10.1177/1060028015594812
Papakostas GI. Managing partial response or nonresponse: switching, augmentation, and combination strategies for major depressive disorder. J Clin Psychiatry. 2009;70(Suppl 6):16–25.
pubmed: 19922740 doi: 10.4088/JCP.8133su1c.03
De Deurwaerdere P, Di Giovanni G Serotonergic modulation of the activity of mesencephalic dopaminergic systems: therapeutic implications. Prog Neurobiol. 2016.
Chagraoui A, Thibaut F, Skiba M, Thuillez C, Bourin M. 5-HT2C receptors in psychiatric disorders: a review. Prog Neuropsychopharmacol Biol Psychiatry. 2016;66:120–35.
pubmed: 26739950 doi: 10.1016/j.pnpbp.2015.12.006
Prisco S, Esposito E. Differential effects of acute and chronic fluoxetine administration on the spontaneous activity of dopaminergic neurones in the ventral tegmental area. Br J Pharmacol. 1995;116:1923–31.
pubmed: 8528581 pmcid: 1909093 doi: 10.1111/j.1476-5381.1995.tb16684.x
Grottick AJ, Fletcher PJ, Higgins GA. Studies to investigate the role of 5-HT(2C) receptors on cocaine- and food-maintained behavior. J Pharmacol Exp Ther. 2000;295:1183–91.
pubmed: 11082456
Zeeb FD, Higgins GA, Fletcher PJ. The serotonin 2C receptor agonist lorcaserin attenuates intracranial self-stimulation and blocks the reward-enhancing effects of nicotine. ACS Chem Neurosci. 2015;6:1231–40.
pubmed: 25781911 doi: 10.1021/acschemneuro.5b00017
Simpson EH, Kellendonk C, Ward RD, Richards V, Lipatova O, Fairhurst S, et al. Pharmacologic rescue of motivational deficit in an animal model of the negative symptoms of schizophrenia. Biol Psychiatry. 2011;69:928–35.
pubmed: 21414604 pmcid: 3170714 doi: 10.1016/j.biopsych.2011.01.012
Bailey MR, Williamson C, Mezias C, Winiger V, Silver R, Balsam PD, et al. The effects of pharmacological modulation of the serotonin 2C receptor on goal-directed behavior in mice. Psychopharmacol (Berl). 2016;233:615–24.
doi: 10.1007/s00213-015-4135-3
Browne CJ, Fletcher PJ. Decreased incentive motivation following knockout or acute blockade of the serotonin transporter: role of the 5-HT2C receptor. Neuropsychopharmacology. 2016.
Lira A, Zhou M, Castanon N, Ansorge MS, Gordon JA, Francis JH, et al. Altered depression-related behaviors and functional changes in the dorsal raphe nucleus of serotonin transporter-deficient mice. Biol Psychiatry. 2003;54:960–71.
pubmed: 14625138 doi: 10.1016/S0006-3223(03)00696-6
Ramboz S, Oosting R, Amara DA, Kung HF, Blier P, Mendelsohn M, et al. Serotonin receptor 1A knockout: an animal model of anxiety-related disorder. Proc Natl Acad Sci USA. 1998;95:14476–81.
pubmed: 9826725 doi: 10.1073/pnas.95.24.14476 pmcid: 24398
Saudou F, Amara DA, Dierich A, LeMeur M, Ramboz S, Segu L, et al. Enhanced aggressive behavior in mice lacking 5-HT1B receptor. Science. 1994;265:1875–8.
pubmed: 8091214 doi: 10.1126/science.8091214
Gonzalez-Maeso J, Yuen T, Ebersole BJ, Wurmbach E, Lira A, Zhou M, et al. Transcriptome fingerprints distinguish hallucinogenic and nonhallucinogenic 5-hydroxytryptamine 2A receptor agonist effects in mouse somatosensory cortex. J Neurosci. 2003;23:8836–43.
pubmed: 14523084 pmcid: 6740401 doi: 10.1523/JNEUROSCI.23-26-08836.2003
Compan V, Zhou M, Grailhe R, Gazzara RA, Martin R, Gingrich J, et al. Attenuated response to stress and novelty and hypersensitivity to seizures in 5-HT4 receptor knock-out mice. J Neurosci. 2004;24:412–9.
pubmed: 14724239 pmcid: 6729986 doi: 10.1523/JNEUROSCI.2806-03.2004
Bunney BS, Walters JR, Roth RH, Aghajanian GK. Dopaminergic neurons: effect of antipsychotic drugs and amphetamine on single cell activity. J Pharmacol Exp Ther. 1973;185:560–71.
pubmed: 4576427
Grace AA, Bunney BS. Nigral dopamine neurons: intracellular recording and identification with L-dopa injection and histofluorescence. Science. 1980;210:654–6.
pubmed: 7433992 doi: 10.1126/science.7433992
Yu Q, Teixeira CM, Mahadevia D, Huang Y, Balsam D, Mann JJ, et al. Dopamine and serotonin signaling during two sensitive developmental periods differentially impact adult aggressive and affective behaviors in mice. Mol Psychiatry. 2014;19:688–98.
pubmed: 24589889 pmcid: 4311886 doi: 10.1038/mp.2014.10
Ansorge MS, Zhou M, Lira A, Hen R, Gingrich JA. Early-life blockade of the 5-HT transporter alters emotional behavior in adult mice. Science. 2004;306:879–81.
pubmed: 15514160 doi: 10.1126/science.1101678
Sun P, Wang F, Wang L, Zhang Y, Yamamoto R, Sugai T, et al. Increase in cortical pyramidal cell excitability accompanies depression-like behavior in mice: a transcranial magnetic stimulation study. J Neurosci. 2011;31:16464–72.
pubmed: 22072696 pmcid: 6633240 doi: 10.1523/JNEUROSCI.1542-11.2011
Muller JM, Morelli E, Ansorge M, Gingrich JA. Serotonin transporter deficient mice are vulnerable to escape deficits following inescapable shocks. Genes Brain Behav. 2011;10:166–75.
pubmed: 20955517 doi: 10.1111/j.1601-183X.2010.00652.x
Valentine G, Dow A, Banasr M, Pittman B, Duman R. Differential effects of chronic antidepressant treatment on shuttle box escape deficits induced by uncontrollable stress. Psychopharmacology (Berl). 2008;200:585–96.
doi: 10.1007/s00213-008-1239-z
Hoffman BJ, Mezey E. Distribution of serotonin 5-HT1C receptor mRNA in adult rat brain. FEBS Lett. 1989;247:453–62.
pubmed: 2714444 doi: 10.1016/0014-5793(89)81390-0
Mengod G, Nguyen H, Le H, Waeber C, Lubbert H, Palacios JM. The distribution and cellular localization of the serotonin 1C receptor mRNA in the rodent brain examined by in situ hybridization histochemistry. Comparison with receptor binding distribution. Neuroscience. 1990;35:577–91.
pubmed: 2381516 doi: 10.1016/0306-4522(90)90330-7
Eberle-Wang K, Mikeladze Z, Uryu K, Chesselet MF. Pattern of expression of the serotonin2C receptor messenger RNA in the basal ganglia of adult rats. J Comp Neurol. 1997;384:233–47.
pubmed: 9215720 doi: 10.1002/(SICI)1096-9861(19970728)384:2<233::AID-CNE5>3.0.CO;2-2
Hajos M, Greenfield SA. Synaptic connections between pars compacta and pars reticulata neurones: electrophysiological evidence for functional modules within the substantia nigra. Brain Res. 1994;660:216–24.
pubmed: 7820690 doi: 10.1016/0006-8993(94)91292-0
Stanford IM, Lacey MG. Differential actions of serotonin, mediated by 5-HT1B and 5-HT2C receptors, on GABA-mediated synaptic input to rat substantia nigra pars reticulata neurons in vitro. J Neurosci. 1996;16:7566–73.
pubmed: 8922413 pmcid: 6579110 doi: 10.1523/JNEUROSCI.16-23-07566.1996
Ward RP, Dorsa DM. Colocalization of serotonin receptor subtypes 5-HT2A, 5-HT2C, and 5-HT6 with neuropeptides in rat striatum. J Comp Neurol. 1996;370:405–14.
pubmed: 8799865 doi: 10.1002/(SICI)1096-9861(19960701)370:3<405::AID-CNE10>3.0.CO;2-R
Mingote S, Chuhma N, Kalmbach A, Thomsen GM, Wang Y, Mihali A et al. Dopamine neuron dependent behaviors mediated by glutamate cotransmission. Elife. 2017;13:6.
Freeman AS, Meltzer LT, Bunney BS. Firing properties of substantia nigra dopaminergic neurons in freely moving rats. Life Sci. 1985;36:1983–94.
pubmed: 3990520 doi: 10.1016/0024-3205(85)90448-5
Grace AA, Bunney BS. The control of firing pattern in nigral dopamine neurons: burst firing. J Neurosci. 1984;4:2877–90.
pubmed: 6150071 pmcid: 6564720 doi: 10.1523/JNEUROSCI.04-11-02877.1984
Cooper DC. The significance of action potential bursting in the brain reward circuit. Neurochem Int. 2002;41:333–40.
pubmed: 12176075 doi: 10.1016/S0197-0186(02)00068-2
Venton BJ, Zhang H, Garris PA, Phillips PE, Sulzer D, Wightman RM. Real-time decoding of dopamine concentration changes in the caudate-putamen during tonic and phasic firing. J Neurochem. 2003;87:1284–95.
pubmed: 14622108 doi: 10.1046/j.1471-4159.2003.02109.x
Tepper JM, Martin LP, Anderson DR. GABAA receptor-mediated inhibition of rat substantia nigra dopaminergic neurons by pars reticulata projection neurons. J Neurosci. 1995;15:3092–103.
pubmed: 7722648 pmcid: 6577766 doi: 10.1523/JNEUROSCI.15-04-03092.1995
Paladini CA, Tepper JM. GABA(A) and GABA(B) antagonists differentially affect the firing pattern of substantia nigra dopaminergic neurons in vivo. Synapse. 1999;32:165–76.
pubmed: 10340627 doi: 10.1002/(SICI)1098-2396(19990601)32:3<165::AID-SYN3>3.0.CO;2-N
Dremencov E, El Mansari M, Blier P. Effects of sustained serotonin reuptake inhibition on the firing of dopamine neurons in the rat ventral tegmental area. J Psychiatry Neurosci. 2009;34:223–9.
pubmed: 19448853 pmcid: 2674976
Prisco S, Pagannone S, Esposito E. Serotonin-dopamine interaction in the rat ventral tegmental area: an electrophysiological study in vivo. J Pharmacol Exp Ther. 1994;271:83–90.
pubmed: 7965760
Di Matteo V, Di Giovanni G, Di Mascio M, Esposito E. Selective blockade of serotonin2C/2B receptors enhances dopamine release in the rat nucleus accumbens. Neuropharmacology. 1998;37:265–72.
pubmed: 9680252 doi: 10.1016/S0028-3908(98)00014-8
Di Giovanni G, De Deurwaerdere P, Di Mascio M, Di Matteo V, Esposito E, Spampinato U. Selective blockade of serotonin-2C/2B receptors enhances mesolimbic and mesostriatal dopaminergic function: a combined in vivo electrophysiological and microdialysis study. Neuroscience. 1999;91:587–97.
pubmed: 10366016 doi: 10.1016/S0306-4522(98)00655-1
Di Giovanni G, Di Matteo V, Di Mascio M, Esposito E. Preferential modulation of mesolimbic vs. nigrostriatal dopaminergic function by serotonin(2C/2B) receptor agonists: a combined in vivo electrophysiological and microdialysis study. Synapse. 2000;35:53–61.
pubmed: 10579808 doi: 10.1002/(SICI)1098-2396(200001)35:1<53::AID-SYN7>3.0.CO;2-2
Di Matteo V, Di Giovanni G, Di Mascio M, Esposito E. SB 242084, a selective serotonin2C receptor antagonist, increases dopaminergic transmission in the mesolimbic system. Neuropharmacology. 1999;38:1195–205.
pubmed: 10462132 doi: 10.1016/S0028-3908(99)00047-7
Abdallah L, Bonasera SJ, Hopf FW, O’Dell L, Giorgetti M, Jongsma M, et al. Impact of serotonin 2C receptor null mutation on physiology and behavior associated with nigrostriatal dopamine pathway function. J Neurosci. 2009;29:8156–65.
pubmed: 19553455 pmcid: 3077993 doi: 10.1523/JNEUROSCI.3905-08.2009
Bailey MR, Goldman O, Bello EP, Chohan MO, Jeong N, Winiger V, et al. An interaction between serotonin receptor signaling and dopamine enhances goal-directed vigor and persistence in mice. J Neurosci. 2018;38:2149–62.
pubmed: 29367407 pmcid: 5830508 doi: 10.1523/JNEUROSCI.2088-17.2018
Michelsen KA, Schmitz C, Steinbusch HW. The dorsal raphe nucleus--from silver stainings to a role in depression. Brain Res Rev. 2007;55:329–42.
pubmed: 17316819 doi: 10.1016/j.brainresrev.2007.01.002
Dray A, Davies J, Oakley NR, Tongroach P, Vellucci S. The dorsal and medial raphe projections to the substantia nigra in the rat: electrophysiological, biochemical and behavioural observations. Brain Res. 1978;151:431–42.
pubmed: 667623 doi: 10.1016/0006-8993(78)91077-6
Miller JJ, Richardson TL, Fibiger HC, McLennan H. Anatomical and electrophysiological identification of a projection from the mesencephalic raphe to the caudate-putamen in the rat. Brain Res. 1975;97:133–6.
pubmed: 1175030 doi: 10.1016/0006-8993(75)90920-8
Imai H, Steindler DA, Kitai ST. The organization of divergent axonal projections from the midbrain raphe nuclei in the rat. J Comp Neurol. 1986;243:363–80.
pubmed: 2419370 doi: 10.1002/cne.902430307
Vertes RP. A PHA-L analysis of ascending projections of the dorsal raphe nucleus in the rat. J Comp Neurol. 1991;313:643–68.
pubmed: 1783685 doi: 10.1002/cne.903130409
Moukhles H, Bosler O, Bolam JP, Vallee A, Umbriaco D, Geffard M, et al. Quantitative and morphometric data indicate precise cellular interactions between serotonin terminals and postsynaptic targets in rat substantia nigra. Neuroscience. 1997;76:1159–71.
pubmed: 9027876 doi: 10.1016/S0306-4522(96)00452-6
Ogawa SK, Cohen JY, Hwang D, Uchida N, Watabe-Uchida M. Organization of monosynaptic inputs to the serotonin and dopamine neuromodulatory systems. Cell Rep. 2014;8:1105–18.
pubmed: 25108805 pmcid: 4142108 doi: 10.1016/j.celrep.2014.06.042
Cohen JY. Dopamine and serotonin signals for reward across time scales. Science. 2015;350:47.
pubmed: 26430113 doi: 10.1126/science.aad3003
Liu Z, Zhou J, Li Y, Hu F, Lu Y, Ma M, et al. Dorsal raphe neurons signal reward through 5-HT and glutamate. Neuron. 2014;81:1360–74.
pubmed: 24656254 pmcid: 4411946 doi: 10.1016/j.neuron.2014.02.010
McDevitt RA, Tiran-Cappello A, Shen H, Balderas I, Britt JP, Marino RA, et al. Serotonergic versus nonserotonergic dorsal raphe projection neurons: differential participation in reward circuitry. Cell Rep. 2014;8:1857–69.
pubmed: 25242321 pmcid: 4181379 doi: 10.1016/j.celrep.2014.08.037
Sanders AC, Hussain AJ, Hen R, Zhuang X. Chronic blockade or constitutive deletion of the serotonin transporter reduces operant responding for food reward. Neuropsychopharmacology. 2007;32:2321–9.
pubmed: 17356573 doi: 10.1038/sj.npp.1301368
Calizo LH, Akanwa A, Ma X, Pan YZ, Lemos JC, Craige C, et al. Raphe serotonin neurons are not homogenous: electrophysiological, morphological and neurochemical evidence. Neuropharmacology. 2011;61:524–43.
pubmed: 21530552 pmcid: 3120045 doi: 10.1016/j.neuropharm.2011.04.008
Weissbourd B, Ren J, DeLoach KE, Guenthner CJ, Miyamichi K, Luo L. Presynaptic partners of dorsal raphe serotonergic and GABAergic neurons. Neuron. 2014;83:645–62.
pubmed: 25102560 pmcid: 4779447 doi: 10.1016/j.neuron.2014.06.024
Beier KT, Steinberg EE, DeLoach KE, Xie S, Miyamichi K, Schwarz L, et al. Circuit architecture of VTA dopamine neurons revealed by systematic input-output mapping. Cell. 2015;162:622–34.
pubmed: 26232228 pmcid: 4522312 doi: 10.1016/j.cell.2015.07.015
Okaty BW, Freret ME, Rood BD, Brust RD, Hennessy ML, deBairos D, et al. Multi-scale molecular deconstruction of the serotonin neuron system. Neuron. 2015;88:774–91.
pubmed: 26549332 pmcid: 4809055 doi: 10.1016/j.neuron.2015.10.007
Cases O, Lebrand C, Giros B, Vitalis T, De Maeyer E, Caron MG, et al. Plasma membrane transporters of serotonin, dopamine, and norepinephrine mediate serotonin accumulation in atypical locations in the developing brain of monoamine oxidase A knock-outs. J Neurosci. 1998;18:6914–27.
pubmed: 9712661 pmcid: 6792975 doi: 10.1523/JNEUROSCI.18-17-06914.1998
Zhou FC, Lesch KP, Murphy DL. Serotonin uptake into dopamine neurons via dopamine transporters: a compensatory alternative. Brain Res. 2002;942:109–19.
pubmed: 12031859 doi: 10.1016/S0006-8993(02)02709-9
Zhou FM, Liang Y, Salas R, Zhang L, De Biasi M, Dani JA. Corelease of dopamine and serotonin from striatal dopamine terminals. Neuron. 2005;46:65–74.
pubmed: 15820694 doi: 10.1016/j.neuron.2005.02.010
Arya DK. Extrapyramidal symptoms with selective serotonin reuptake inhibitors. Br J Psychiatry. 1994;165:728–33.
pubmed: 7881774 doi: 10.1192/bjp.165.6.728
Leo RJ. Movement disorders associated with the serotonin selective reuptake inhibitors. J Clin Psychiatry. 1996;57:449–54.
pubmed: 8909330 doi: 10.4088/JCP.v57n1002
Hedenmalm K, Guzey C, Dahl ML, Yue QY, Spigset O. Risk factors for extrapyramidal symptoms during treatment with selective serotonin reuptake inhibitors, including cytochrome P-450 enzyme, and serotonin and dopamine transporter and receptor polymorphisms. J Clin Psychopharmacol. 2006;26:192–7.
pubmed: 16633151 doi: 10.1097/01.jcp.0000203200.96205.34
Lane RM. SSRI-induced extrapyramidal side-effects and akathisia: implications for treatment. J Psychopharmacol. 1998;12:192–214.
pubmed: 9694033 doi: 10.1177/026988119801200212
Caley CF. Extrapyramidal reactions and the selective serotonin-reuptake inhibitors. Ann Pharmacother. 1997;31:1481–9.
pubmed: 9416386 doi: 10.1177/106002809703101208
Madhusoodanan S, Alexeenko L, Sanders R, Brenner R. Extrapyramidal symptoms associated with antidepressants--a review of the literature and an analysis of spontaneous reports. Ann Clin Psychiatry. 2010;22:148–56.
pubmed: 20680187
Gill HS, DeVane CL, Risch SC. Extrapyramidal symptoms associated with cyclic antidepressant treatment: a review of the literature and consolidating hypotheses. J Clin Psychopharmacol. 1997;17:377–89.
pubmed: 9315989 doi: 10.1097/00004714-199710000-00007
Haber SN, Fudge JL, McFarland NR. Striatonigrostriatal pathways in primates form an ascending spiral from the shell to the dorsolateral striatum. J Neurosci. 2000;20:2369–82.
pubmed: 10704511 pmcid: 6772499 doi: 10.1523/JNEUROSCI.20-06-02369.2000
Haber SN. The primate basal ganglia: parallel and integrative networks. J Chem Neuroanat. 2003;26:317–30.
pubmed: 14729134 doi: 10.1016/j.jchemneu.2003.10.003
Haber SN, Calzavara R. The cortico-basal ganglia integrative network: the role of the thalamus. Brain Res Bull. 2009;78:69–74.
pubmed: 18950692 doi: 10.1016/j.brainresbull.2008.09.013
Middleton FA, Strick PL. Basal ganglia and cerebellar loops: motor and cognitive circuits. Brain Res Brain Res Rev. 2000;31:236–50.
pubmed: 10719151 doi: 10.1016/S0165-0173(99)00040-5
Marsh R, Maia TV, Peterson BS. Functional disturbances within frontostriatal circuits across multiple childhood psychopathologies. Am J Psychiatry. 2009;166:664–74.
pubmed: 19448188 pmcid: 2734479 doi: 10.1176/appi.ajp.2009.08091354
Smith SR, Weissman NJ, Anderson CM, Sanchez M, Chuang E, Stubbe S, et al. Multicenter, placebo-controlled trial of lorcaserin for weight management. N Engl J Med. 2010;363:245–56.
pubmed: 20647200 doi: 10.1056/NEJMoa0909809
Beard E, Shahab L, Cummings DM, Michie S, West R. New Pharmacological agents to aid smoking cessation and tobacco harm reduction: what has been investigated, and what is in the pipeline? CNS Drugs. 2016;30:951-83.
Higgins GA, Fletcher PJ. Therapeutic potential of 5-HT2C receptor agonists for addictive disorders. ACS Chem Neurosci. 2015;6:1071–88.
pubmed: 25870913 doi: 10.1021/acschemneuro.5b00025
Opal MD, Klenotich SC, Morais M, Bessa J, Winkle J, Doukas D, et al. Serotonin 2C receptor antagonists induce fast-onset antidepressant effects. Mol Psychiatry. 2014;19:1106–14.
pubmed: 24166413 doi: 10.1038/mp.2013.144

Auteurs

Elena Y Demireva (EY)

Department of Psychiatry, Columbia University, New York, NY, 10032, USA.
Department of Developmental Neuroscience, New York State Psychiatric Institute, New York, NY, 10032, USA.

Deepika Suri (D)

Department of Psychiatry, Columbia University, New York, NY, 10032, USA.

Emanuela Morelli (E)

Department of Psychiatry, Columbia University, New York, NY, 10032, USA.

Darshini Mahadevia (D)

Department of Psychiatry, Columbia University, New York, NY, 10032, USA.

Nao Chuhma (N)

Department of Psychiatry, Columbia University, New York, NY, 10032, USA.
Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY, 10032, USA.

Catia M Teixeira (CM)

Department of Psychiatry, Columbia University, New York, NY, 10032, USA.
Department of Developmental Neuroscience, New York State Psychiatric Institute, New York, NY, 10032, USA.

Annette Ziolkowski (A)

Department of Psychiatry, Columbia University, New York, NY, 10032, USA.
Department of Developmental Neuroscience, New York State Psychiatric Institute, New York, NY, 10032, USA.

Marc Hersh (M)

Department of Psychiatry, Columbia University, New York, NY, 10032, USA.

James Fifer (J)

Department of Psychiatry, Columbia University, New York, NY, 10032, USA.

Sneha Bagchi (S)

Department of Psychiatry, Columbia University, New York, NY, 10032, USA.

Alexei Chemiakine (A)

Department of Psychiatry, Columbia University, New York, NY, 10032, USA.

Holly Moore (H)

Department of Psychiatry, Columbia University, New York, NY, 10032, USA.
Division of Systems Neuroscience, New York State Psychiatric Institute, New York, NY, 10032, USA.

Jay A Gingrich (JA)

Department of Psychiatry, Columbia University, New York, NY, 10032, USA.
Department of Developmental Neuroscience, New York State Psychiatric Institute, New York, NY, 10032, USA.

Peter Balsam (P)

Department of Psychiatry, Columbia University, New York, NY, 10032, USA.
Department of Developmental Neuroscience, New York State Psychiatric Institute, New York, NY, 10032, USA.

Stephen Rayport (S)

Department of Psychiatry, Columbia University, New York, NY, 10032, USA.
Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY, 10032, USA.

Mark S Ansorge (MS)

Department of Psychiatry, Columbia University, New York, NY, 10032, USA. ma2362@cumc.columbia.edu.
Department of Developmental Neuroscience, New York State Psychiatric Institute, New York, NY, 10032, USA. ma2362@cumc.columbia.edu.

Articles similaires

Robotic Surgical Procedures Animals Humans Telemedicine Models, Animal

Odour generalisation and detection dog training.

Lyn Caldicott, Thomas W Pike, Helen E Zulch et al.
1.00
Animals Odorants Dogs Generalization, Psychological Smell
Animals TOR Serine-Threonine Kinases Colorectal Neoplasms Colitis Mice
Animals Tail Swine Behavior, Animal Animal Husbandry

Classifications MeSH