Strong in combination: Polyphasic approach enhances arguments for cold-assigned cyanobacterial endemism.
Antarctic Regions
Arctic Regions
Bacteriological Techniques
Biodiversity
Cluster Analysis
Cold Temperature
Cyanobacteria
/ classification
DNA, Bacterial
/ chemistry
DNA, Ribosomal
/ chemistry
Denaturing Gradient Gel Electrophoresis
Microscopy
Phylogeny
RNA, Ribosomal, 16S
/ genetics
Sequence Analysis, DNA
Soil Microbiology
Tundra
Antarctica
Arctic
biogeography
biological soil crusts
cyanobacteria
denaturing gradient gel electrophoresis
endemism
polyphasic approach
Journal
MicrobiologyOpen
ISSN: 2045-8827
Titre abrégé: Microbiologyopen
Pays: England
ID NLM: 101588314
Informations de publication
Date de publication:
05 2019
05 2019
Historique:
received:
06
05
2018
revised:
09
08
2018
accepted:
10
08
2018
pubmed:
22
9
2018
medline:
10
4
2020
entrez:
22
9
2018
Statut:
ppublish
Résumé
Cyanobacteria of biological soil crusts (BSCs) represent an important part of circumpolar and Alpine ecosystems, serve as indicators for ecological condition and climate change, and function as ecosystem engineers by soil stabilization or carbon and nitrogen input. The characterization of cyanobacteria from both polar regions remains extremely important to understand geographic distribution patterns and community compositions. This study is the first of its kind revealing the efficiency of combining denaturing gradient gel electrophoresis (DGGE), light microscopy and culture-based 16S rRNA gene sequencing, applied to polar and Alpine cyanobacteria dominated BSCs. This study aimed to show the living proportion of cyanobacteria as an extension to previously published meta-transcriptome data of the same study sites. Molecular fingerprints showed a distinct clustering of cyanobacterial communities with a close relationship between Arctic and Alpine populations, which differed from those found in Antarctica. Species richness and diversity supported these results, which were also confirmed by microscopic investigations of living cyanobacteria from the BSCs. Isolate-based sequencing corroborated these trends as cold biome clades were assigned, which included a potentially new Arctic clade of Oculatella. Thus, our results contribute to the debate regarding biogeography of cyanobacteria of cold biomes.
Identifiants
pubmed: 30239166
doi: 10.1002/mbo3.729
pmc: PMC6528576
doi:
Substances chimiques
DNA, Bacterial
0
DNA, Ribosomal
0
RNA, Ribosomal, 16S
0
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
e00729Informations de copyright
© 2018 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.
Références
Environ Microbiol. 2005 Apr;7(4):519-29
pubmed: 15816929
FEMS Microbiol Ecol. 2018 Apr 1;94(4):
pubmed: 29506259
Oecologia. 2004 Oct;141(2):306-16
pubmed: 14689292
Oecologia. 1986 Dec;71(1):104-110
pubmed: 28312090
Front Microbiol. 2014 Apr 09;5:154
pubmed: 24782842
Glob Chang Biol. 2013 Dec;19(12):3835-47
pubmed: 23818331
Curr Opin Microbiol. 2001 Jun;4(3):301-6
pubmed: 11378483
Plant Physiol. 2001 Feb;125(2):738-51
pubmed: 11161031
J Microbiol Methods. 2013 Mar;92(3):256-63
pubmed: 23313091
FEMS Microbiol Ecol. 2015 Dec;91(12):
pubmed: 26564957
Microbiologyopen. 2019 May;8(5):e00729
pubmed: 30239166
Appl Environ Microbiol. 1997 Aug;63(8):3327-32
pubmed: 9251225
Res Microbiol. 2000 Apr;151(3):167-77
pubmed: 10865943
Appl Environ Microbiol. 2001 Apr;67(4):1902-10
pubmed: 11282648
Microb Ecol. 2009 Aug;58(2):394-407
pubmed: 19479305
Biodivers Conserv. 2014;23:1639-1658
pubmed: 24954978
Conserv Biol. 2008 Dec;22(6):1533-43
pubmed: 18759770
Bacteriol Rev. 1971 Jun;35(2):171-205
pubmed: 4998365
Microb Ecol. 2019 Jan;77(1):136-147
pubmed: 29796758
FEMS Microbiol Ecol. 2016 Oct;92(10):
pubmed: 27411981
Nat Rev Microbiol. 2006 Feb;4(2):102-12
pubmed: 16415926
ISME J. 2008 Apr;2(4):379-92
pubmed: 18340335
ISME J. 2008 Mar;2(3):308-20
pubmed: 18239611
Appl Environ Microbiol. 2004 Feb;70(2):973-83
pubmed: 14766579
Syst Appl Microbiol. 2001 Jul;24(2):227-31
pubmed: 11518325
FEMS Microbiol Ecol. 2007 Feb;59(2):366-76
pubmed: 17313583
Environ Microbiol. 2013 Apr;15(4):1103-14
pubmed: 22816485
Nature. 2001 Sep 27;413(6854):380-1
pubmed: 11574875
Proc Natl Acad Sci U S A. 2014 Apr 15;111(15):5634-9
pubmed: 24616489
New Phytol. 2010 Apr;186(2):451-60
pubmed: 20136719
ISME J. 2010 Feb;4(2):191-202
pubmed: 19890368
Nature. 1990 May 3;345(6270):63-5
pubmed: 1691827
Philos Trans R Soc Lond B Biol Sci. 2012 Nov 19;367(1606):3087-99
pubmed: 23045707
Int J Syst Bacteriol. 1997 Jul;47(3):693-7
pubmed: 9226902
Annu Rev Microbiol. 2001;55:485-529
pubmed: 11544365
Nat Rev Microbiol. 2010 Feb;8(2):129-38
pubmed: 20075927
Microb Ecol. 2005 Oct;50(3):396-407
pubmed: 16328651
New Phytol. 2006;171(1):41-53
pubmed: 16771981
FEMS Microbiol Ecol. 2018 May 1;94(5):
pubmed: 29547924
Appl Environ Microbiol. 2003 Sep;69(9):5157-69
pubmed: 12957897
Mol Biol Evol. 2016 Jul;33(7):1870-4
pubmed: 27004904
Front Plant Sci. 2015 Sep 11;6:692
pubmed: 26442009