Photoreceptor degeneration in a new Cacna1f mutant mouse model.
Animals
Calcium Channels
/ genetics
Calcium Channels, L-Type
Disease Models, Animal
Electroretinography
Exons
Frameshift Mutation
Genotyping Techniques
Immunohistochemistry
Male
Mice
Mice, Inbred C57BL
Mice, Mutant Strains
Night Vision
/ physiology
Photoreceptor Cells, Vertebrate
/ pathology
Polymerase Chain Reaction
Polymorphism, Restriction Fragment Length
Retina
/ physiopathology
Retinal Degeneration
/ genetics
Rod Opsins
/ metabolism
Tomography, Optical Coherence
Cone opsins
Congenital stationary night blindness
Electroretinogram
Mice
X-linked recessive inheritance
Journal
Experimental eye research
ISSN: 1096-0007
Titre abrégé: Exp Eye Res
Pays: England
ID NLM: 0370707
Informations de publication
Date de publication:
02 2019
02 2019
Historique:
received:
13
07
2018
revised:
17
10
2018
accepted:
12
11
2018
pubmed:
18
11
2018
medline:
16
4
2019
entrez:
17
11
2018
Statut:
ppublish
Résumé
The Cacna1f gene encodes the α1F subunit of an L-type voltage-gated calcium channel, Cav1.4. In photoreceptor synaptic terminals, Cav1.4 channels mediate glutamate release and postsynaptic responses associated with visual signal transmission. We have discovered a new Cacna1f mutation in nob9 mice, which display more severe phenotypes than do nob2 mice. To characterize the nob9 phenotype at different ages, we examined the murine fundus, applied retinal optical coherence tomography, measured flash electroretinograms (ERGs) in vivo, and analyzed the retinal histology in vitro. After identifying the X-linked recessive inheritance trait, we sequenced Cacna1f as the candidate gene. Mutations in this gene were detected by polymerase chain reaction (PCR) and confirmed by restriction fragment length polymorphism. Morphologically, an early-onset of retinal disorder was detected, and the degeneration of the outer plexiform layers progressed rapidly. Moreover, the mutant mice showed drastically reduced scotopic ERGs with increasing age. In 14-month-old nob9 retinas, immunostaining of cone opsins demonstrated a reduction in the number of short-wavelength opsins (S-opsins) to 54% of wild-type levels, and almost no middle-wavelength opsins (M-opsins) were observed. No cone ERGs could be detected from residual cones, in which S-opsins abnormally migrated to inner segments of the photoreceptors. The mutations of the Cacna1f gene in nob9 mice involved both a single nucleotide G to A transition and a 10-nucleotide insertion, the latter resulting in a frame-shift mutation in exon 14.
Identifiants
pubmed: 30445045
pii: S0014-4835(18)30476-7
doi: 10.1016/j.exer.2018.11.010
pmc: PMC6360104
mid: NIHMS1513012
pii:
doi:
Substances chimiques
Cacna1f protein, mouse
0
Calcium Channels
0
Calcium Channels, L-Type
0
Rod Opsins
0
middle-wavelength opsin
0
short-wavelength opsin
0
Types de publication
Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
106-114Subventions
Organisme : NEI NIH HHS
ID : R01 EY019943
Pays : United States
Organisme : NEI NIH HHS
ID : R21 EY018331
Pays : United States
Organisme : NEI NIH HHS
ID : R21 EY023543
Pays : United States
Informations de copyright
Copyright © 2018 Elsevier Ltd. All rights reserved.
Références
PLoS One. 2016 May 26;11(5):e0156542
pubmed: 27228218
Hum Mol Genet. 2014 Mar 15;23(6):1538-50
pubmed: 24163243
J Neurosci. 2008 Nov 12;28(46):11768-77
pubmed: 19005038
Invest Ophthalmol Vis Sci. 2001 Sep;42(10):2414-8
pubmed: 11527958
PLoS One. 2017 Nov 13;12(11):e0188032
pubmed: 29131863
Genomics. 1997 Oct 15;45(2):340-7
pubmed: 9344658
J Neurosci. 2004 Feb 18;24(7):1707-18
pubmed: 14973233
PLoS One. 2008 Jul 02;3(7):e2538
pubmed: 18596967
J Comp Neurol. 2007 Jan 10;500(2):286-98
pubmed: 17111373
Nat Rev Neurosci. 2010 Dec;11(12):812-22
pubmed: 21045860
Trends Neurosci. 2005 Jan;28(1):20-9
pubmed: 15626493
Adv Exp Med Biol. 2010;664:549-58
pubmed: 20238058
Hum Mol Genet. 2014 Jun 1;23(11):2981-94
pubmed: 24419318
J Insect Sci. 2015 Jul 01;15:
pubmed: 26136498
PLoS One. 2014 Jan 21;9(1):e86769
pubmed: 24466230
Seizure. 2002 Jun;11(4):266-8
pubmed: 12027575
Vis Neurosci. 2005 Sep-Oct;22(5):561-8
pubmed: 16332266
Doc Ophthalmol. 2007 Nov;115(3):137-44
pubmed: 17479214
Nat Genet. 2001 Sep;29(1):70-4
pubmed: 11528395
J Physiol. 2012 Aug 15;590(16):3841-55
pubmed: 22641773
Vis Neurosci. 2006 Jan-Feb;23(1):11-24
pubmed: 16597347
Hum Mol Genet. 2005 Oct 15;14(20):3035-46
pubmed: 16155113
Channels (Austin). 2013 Nov-Dec;7(6):503-13
pubmed: 24051672
Channels (Austin). 2018 Jan 1;12(1):17-33
pubmed: 29179637
Nat Genet. 1998 Jul;19(3):264-7
pubmed: 9662400
Graefes Arch Clin Exp Ophthalmol. 2004 Sep;242(9):729-35
pubmed: 15069569
Hum Genet. 1999 Jul-Aug;105(1-2):2-9
pubmed: 10480348
Hum Genet. 2001 Feb;108(2):91-7
pubmed: 11281458
Immunity. 2011 Sep 23;35(3):349-60
pubmed: 21835646
Arch Ophthalmol. 1986 Jul;104(7):1013-20
pubmed: 3488053
Doc Ophthalmol. 2014 Apr;128(2):77-89
pubmed: 24395437
Channels (Austin). 2015;9(5):298-306
pubmed: 26274509
Invest Ophthalmol Vis Sci. 2011 Jan 05;52(1):7-15
pubmed: 21169527
Channels (Austin). 2013 Nov-Dec;7(6):514-23
pubmed: 24064553
Clin Chem. 1985 Jan;31(1):164-5
pubmed: 3965205