scFTD-seq: freeze-thaw lysis based, portable approach toward highly distributed single-cell 3' mRNA profiling.
Animals
Cell Line
Freezing
Gene Expression Profiling
/ methods
High-Throughput Nucleotide Sequencing
/ methods
Human Umbilical Vein Endothelial Cells
Humans
Lupus Erythematosus, Systemic
/ genetics
Male
Melanoma, Experimental
/ genetics
Mice
Oligonucleotide Array Sequence Analysis
RNA, Messenger
/ chemistry
Sequence Analysis, RNA
/ methods
Single-Cell Analysis
/ methods
T-Lymphocytes
Workflow
Journal
Nucleic acids research
ISSN: 1362-4962
Titre abrégé: Nucleic Acids Res
Pays: England
ID NLM: 0411011
Informations de publication
Date de publication:
20 02 2019
20 02 2019
Historique:
accepted:
04
11
2018
revised:
13
10
2018
received:
28
08
2018
pubmed:
22
11
2018
medline:
23
8
2019
entrez:
22
11
2018
Statut:
ppublish
Résumé
Cellular barcoding of 3' mRNAs enabled massively parallel profiling of single-cell gene expression and has been implemented in droplet and microwell based platforms. The latter further adds the value for compatibility with low input samples, optical imaging, scalability, and portability. However, cell lysis in microwells remains challenging despite the recently developed sophisticated solutions. Here, we present scFTD-seq, a microchip platform for performing single-cell freeze-thaw lysis directly toward 3' mRNA sequencing. It offers format flexibility with a simplified, widely adoptable workflow that reduces the number of preparation steps and hands-on time, with the quality of data and cost per sample matching that of the state-of-the-art scRNA-seq platforms. Freeze-thaw, known as an unfavorable lysis method resulting in possible RNA fragmentation, turns out to be fully compatible with 3' scRNA-seq. We applied it to the profiling of circulating follicular helper T cells implicated in systemic lupus erythematosus pathogenesis. Our results delineate the heterogeneity in the transcriptional programs and effector functions of these rare pathogenic T cells. As scFTD-seq decouples on-chip cell isolation and library preparation, we envision it to allow sampling at the distributed sites including point-of-care settings and downstream processing at centralized facilities, which should enable wide-spread adoption beyond academic laboratories.
Identifiants
pubmed: 30462277
pii: 5193346
doi: 10.1093/nar/gky1173
pmc: PMC6379653
doi:
Substances chimiques
RNA, Messenger
0
Types de publication
Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, Non-P.H.S.
Langues
eng
Pagination
e16Subventions
Organisme : NCI NIH HHS
ID : P50 CA121974
Pays : United States
Organisme : NIAMS NIH HHS
ID : R37 AR040072
Pays : United States
Organisme : NIGMS NIH HHS
ID : T32 GM007205
Pays : United States
Informations de copyright
© The Author(s) 2018. Published by Oxford University Press on behalf of Nucleic Acids Research.
Références
Nat Immunol. 2016 Apr;17(4):451-60
pubmed: 26878113
Proc Natl Acad Sci U S A. 2015 Feb 17;112(7):E607-15
pubmed: 25646488
J Immunol. 2011 Mar 1;186(5):2889-96
pubmed: 21270407
J Autoimmun. 2016 Nov;74:182-193
pubmed: 27338520
Sci Rep. 2016 Sep 27;6:33883
pubmed: 27670648
BMC Genomics. 2017 Jul 7;18(1):519
pubmed: 28687070
Immunity. 2013 Oct 17;39(4):770-81
pubmed: 24138884
Cell. 2015 Dec 3;163(6):1400-12
pubmed: 26607794
Arthritis Rheumatol. 2015 Apr;67(4):988-99
pubmed: 25581113
Arthritis Rheum. 2010 Jan;62(1):234-44
pubmed: 20039395
Nat Methods. 2014 Jan;11(1):25-7
pubmed: 24524134
J Immunol. 1983 Jun;130(6):2651-5
pubmed: 6222112
Trends Immunol. 2014 Sep;35(9):436-42
pubmed: 24998903
Nat Immunol. 2015 Jul;16(7):718-28
pubmed: 26054720
Immunity. 2011 Jan 28;34(1):108-21
pubmed: 21215658
Nat Biotechnol. 2006 Jun;24(6):703-7
pubmed: 16699501
Science. 2015 Feb 6;347(6222):1258367
pubmed: 25657253
Sci Rep. 2017 Nov 27;7(1):16327
pubmed: 29180631
Cell. 2015 May 21;161(5):1202-1214
pubmed: 26000488
Nat Rev Rheumatol. 2012 May 01;8(6):337-47
pubmed: 22549246
Cell. 2014 Apr 24;157(3):714-25
pubmed: 24766814
Science. 2015 Mar 6;347(6226):1138-42
pubmed: 25700174
Nat Immunol. 2015 Feb;16(2):142-52
pubmed: 25594465
Nat Biotechnol. 2018 Jun;36(5):411-420
pubmed: 29608179
Pigment Cell Melanoma Res. 2017 Jul;30(4):428-435
pubmed: 28379630
Science. 2014 Feb 14;343(6172):776-9
pubmed: 24531970
J Immunol. 2007 Feb 1;178(3):1960-6
pubmed: 17237447
Proc Natl Acad Sci U S A. 2008 Dec 23;105(51):20173-8
pubmed: 19075237
Nat Biotechnol. 2014 Apr;32(4):381-386
pubmed: 24658644
Nature. 2013 Jun 13;498(7453):236-40
pubmed: 23685454
Nat Methods. 2011 Apr;8(4 Suppl):S6-11
pubmed: 21451510
Nat Rev Immunol. 2018 Jan;18(1):35-45
pubmed: 28787399
Science. 2016 Jun 10;352(6291):1326-1329
pubmed: 27284195
Nat Commun. 2017 Jan 16;8:14049
pubmed: 28091601
Nat Methods. 2017 Apr;14(4):395-398
pubmed: 28192419
Cell. 2015 May 21;161(5):1187-1201
pubmed: 26000487
Genome Biol. 2015 Jun 06;16:120
pubmed: 26047807
Nat Immunol. 2016 Jun;17(6):666-676
pubmed: 27043410
Nat Methods. 2014 Feb;11(2):163-6
pubmed: 24363023
Nat Biotechnol. 2015 May;33(5):495-502
pubmed: 25867923