Application of the Co-Agonist Concerted Transition Model to Analysis of GABAA Receptor Properties.


Journal

Current neuropharmacology
ISSN: 1875-6190
Titre abrégé: Curr Neuropharmacol
Pays: United Arab Emirates
ID NLM: 101157239

Informations de publication

Date de publication:
2019
Historique:
received: 02 10 2018
revised: 16 11 2018
accepted: 28 11 2018
pubmed: 7 12 2018
medline: 20 2 2020
entrez: 7 12 2018
Statut: ppublish

Résumé

The co-agonist concerted transition model is a simple and practical solution to analyze various aspects of GABAA receptor function. Several model-based predictions have been verified experimentally in previous reports. We review here the practical implications of the model and demonstrate how it enables simplification of the experimental procedure and data analysis to characterize the effects of mutations or properties of novel ligands. Specifically, we show that the value of EC50 and the magnitude of current response are directly affected by basal activity, and that coapplication of a background agonist acting at a distinct site or use of a gain-of-function mutation can be employed to enable studies of weak activators or mutated receptors with impaired gating. We also show that the ability of one GABAergic agent to potentiate the activity elicited by another is a computable value that depends on the level of constitutive activity of the ion channel and the ability of each agonist to directly activate the receptor. Significantly, the model accurately accounts for situations where the paired agonists interact with the same site compared to distinct sites on the receptor.

Identifiants

pubmed: 30520374
pii: CN-EPUB-95055
doi: 10.2174/1570159X17666181206092418
pmc: PMC7052843
doi:

Substances chimiques

GABA-A Receptor Agonists 0
Receptors, GABA-A 0
Propofol YI7VU623SF

Types de publication

Journal Article Review

Langues

eng

Sous-ensembles de citation

IM

Pagination

843-851

Subventions

Organisme : NIGMS NIH HHS
ID : R01 GM108580
Pays : United States

Informations de copyright

Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.net.

Références

Methods Mol Biol. 2012;796:317-33
pubmed: 22052498
J Neurosci. 1996 Sep 1;16(17):5415-24
pubmed: 8757254
J Biol Chem. 2014 Oct 3;289(40):27456-68
pubmed: 25086038
Nature. 1993 Dec 9;366(6455):565-9
pubmed: 7504783
Curr Neuropharmacol. 2016;14(7):772-80
pubmed: 26830963
J Neurosci. 2012 Apr 25;32(17):5707-15
pubmed: 22539833
Anesthesiology. 2016 Dec;125(6):1144-1158
pubmed: 27753644
Anesthesiology. 2013 Jun;118(6):1417-25
pubmed: 23407108
J Neurochem. 2011 Oct;119(2):283-93
pubmed: 21806616
Mol Pharmacol. 2018 Feb;93(2):178-189
pubmed: 29192122
Br J Pharmacol. 2006 Aug;148(7):984-90
pubmed: 16783415
Mol Pharmacol. 2019 Jan;95(1):106-119
pubmed: 30333132
Anesthesiology. 2005 Apr;102(4):783-92
pubmed: 15791108
Pharmacol Ther. 2007 Oct;116(1):35-57
pubmed: 17524487
J Biol Chem. 2013 Jul 5;288(27):19343-57
pubmed: 23677991
Adv Pharmacol. 2017;79:1-34
pubmed: 28528665
J Theor Biol. 1967 Aug;16(2):306-20
pubmed: 6048545
Mol Pharmacol. 2017 Nov;92(5):556-563
pubmed: 28790148
Br J Pharmacol. 2006 Jan;147 Suppl 1:S72-81
pubmed: 16402123
Mol Pharmacol. 2018 Feb;93(2):90-100
pubmed: 29150461
J Biol Chem. 2004 May 14;279(20):20982-92
pubmed: 15016806
J Physiol. 2012 Jan 1;590(1):93-8
pubmed: 21807612
Biophys J. 1999 Nov;77(5):2542-51
pubmed: 10545355
Curr Opin Anaesthesiol. 2012 Aug;25(4):411-8
pubmed: 22614249
Mol Pharmacol. 2009 Apr;75(4):973-81
pubmed: 19176850
Mol Pharmacol. 2018 May;93(5):468-476
pubmed: 29439087
J Biol Chem. 2002 Jan 25;277(4):2931-7
pubmed: 11711541
Anesthesiology. 2012 Jan;116(1):47-55
pubmed: 22104494
Mol Pharmacol. 2011 Jul;80(1):79-86
pubmed: 21498656
Sci Rep. 2018 Jul 9;8(1):10341
pubmed: 29985445
Mol Pharmacol. 2015 May;87(5):776-81
pubmed: 25667223
Mol Pharmacol. 2019 Jan;95(1):70-81
pubmed: 30337372
Mol Pharmacol. 2008 Dec;74(6):1687-95
pubmed: 18805938
J Mol Biol. 1965 May;12:88-118
pubmed: 14343300
Nature. 2008 Aug 7;454(7205):722-7
pubmed: 18633353

Auteurs

Allison L Germann (AL)

Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, United States.

Joe Henry Steinbach (JH)

Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, United States.
Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St. Louis, MO, United States.

Gustav Akk (G)

Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, United States.
Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St. Louis, MO, United States.

Articles similaires

Humans Ketamine Propofol Pulmonary Atelectasis Female
T-Lymphocytes, Regulatory Lung Neoplasms Proto-Oncogene Proteins p21(ras) Animals Humans

Pathogenic mitochondrial DNA mutations inhibit melanoma metastasis.

Spencer D Shelton, Sara House, Luiza Martins Nascentes Melo et al.
1.00
DNA, Mitochondrial Humans Melanoma Mutation Neoplasm Metastasis

Prevalence and implications of fragile X premutation screening in Thailand.

Areerat Hnoonual, Sunita Kaewfai, Chanin Limwongse et al.
1.00
Humans Fragile X Mental Retardation Protein Thailand Male Female

Classifications MeSH