Journal

Biomolecular NMR assignments
ISSN: 1874-270X
Titre abrégé: Biomol NMR Assign
Pays: Netherlands
ID NLM: 101472371

Informations de publication

Date de publication:
04 2019
Historique:
received: 22 09 2018
accepted: 11 12 2018
pubmed: 16 12 2018
medline: 20 8 2019
entrez: 16 12 2018
Statut: ppublish

Résumé

The ever-increasing occurrence of antibiotic resistance presents a major threat to public health. Specifically, resistance conferred by β-lactamases places the efficacy of currently available antibiotics at risk. Klebsiella pneumoniae carbapenemase-2 (KPC-2) is a β-lactamase that enables carbapenem resistance and represents a clear and present danger to global public health. In order to combat bacterial infections harboring KPC-2 expression, inhibitors with improved potency need to be developed. Although the structure of KPC-2 has been solved by X-ray crystallography, NMR provides the unique opportunity to study the structure and dynamics of flexible loop regions in solution. Here we report the

Identifiants

pubmed: 30552637
doi: 10.1007/s12104-018-9866-8
pii: 10.1007/s12104-018-9866-8
pmc: PMC6440833
mid: NIHMS1004641
doi:

Substances chimiques

Carbon Isotopes 0
Nitrogen Isotopes 0
Nitrogen-15 0
Protons 0
beta-Lactamases EC 3.5.2.6
beta-lactamase KPC-2, Klebsiella pneumoniae EC 3.5.2.6
Carbon-13 FDJ0A8596D

Types de publication

Journal Article Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, Non-P.H.S.

Langues

eng

Pagination

139-142

Subventions

Organisme : NIAID NIH HHS
ID : R01 AI100560
Pays : United States
Organisme : NIAID NIH HHS
ID : R21 AI114508
Pays : United States
Organisme : NIAID NIH HHS
ID : R01 AI072219
Pays : United States
Organisme : NIAID NIH HHS
ID : R01 AI063517
Pays : United States
Organisme : BLRD VA
ID : I01 BX001974
Pays : United States
Organisme : NIGMS NIH HHS
ID : R35 GM128595
Pays : United States

Références

Barnes MD, Winkler ML, Taracila MA et al (2017) Klebsiella pneumoniae Carbapenemase-2 (KPC-2), Substitutions at Ambler position Asp179, and resistance to ceftazidime-avibactam: unique antibiotic-resistant phenotypes emerge from β-lactamase protein engineering. MBio 8:e00528–e00517. https://doi.org/10.1128/mBio.00528-17
doi: 10.1128/mBio.00528-17
Blair JMA, Webber MA, Baylay AJ et al (2015) Molecular mechanisms of antibiotic resistance. Nat Rev Micro 13:42–51. https://doi.org/10.1038/nrmicro3380
doi: 10.1038/nrmicro3380
Coleman K (2011) Diazabicyclooctanes (DBOs): a potent new class of non-β-lactam β-lactamase inhibitors. Curr Opin Microbiol 14:550–555. https://doi.org/10.1016/j.mib.2011.07.026
doi: 10.1016/j.mib.2011.07.026
Delaglio F, Grzesiek S, Vuister GW et al (1995) NMRPipe: a multidimensional spectral processing system based on UNIX pipes. J Biomol NMR 6:277–293
doi: 10.1007/BF00197809
Ehmann DE, Jahić H, Ross PL et al (2013) Kinetics of Avibactam Inhibition against Class A, C, and D β-Lactamases. J Biol Chem 288:27960–27971. https://doi.org/10.1074/jbc.M113.485979
doi: 10.1074/jbc.M113.485979
Ke W, Bethel CR, Thomson JM et al (2007) Crystal structure of KPC-2: insights into carbapenemase activity in class A beta-lactamases. Biochemistry 46:5732–5740. https://doi.org/10.1021/bi700300u
doi: 10.1021/bi700300u
Krishnan NP, Nguyen NQ, Papp-Wallace KM et al (2015) Inhibition of Klebsiella β-Lactamases (SHV-1 and KPC-2) by Avibactam: a structural study. PLoS ONE 10:e0136813. https://doi.org/10.1371/journal.pone.0136813
doi: 10.1371/journal.pone.0136813
Lee W, Tonelli M, Markley JL (2015) NMRFAM-SPARKY: enhanced software for biomolecular NMR spectroscopy. Bioinformatics 31:1325–1327. https://doi.org/10.1093/bioinformatics/btu830
doi: 10.1093/bioinformatics/btu830
Levitt PS, Papp-Wallace KM, Taracila MA et al (2012) Exploring the role of a conserved class A residue in the Ω-Loop of KPC-2 β-lactamase: a mechanism for ceftazidime hydrolysis. J Biol Chem 287:31783–31793. https://doi.org/10.1074/jbc.M112.348540
doi: 10.1074/jbc.M112.348540
Majiduddin FK, Materon IC, Palzkill TG (2002) Molecular analysis of beta-lactamase structure and function. Int J Med Microbiol 292:127–137. https://doi.org/10.1078/1438-4221-00198
doi: 10.1078/1438-4221-00198
Munoz-Price LS, Poirel L, Bonomo RA et al (2013) Clinical epidemiology of the global expansion of Klebsiella pneumoniae carbapenemases. Lancet Infect Dis 13:785–796. https://doi.org/10.1016/S1473-3099(13)70190-7
doi: 10.1016/S1473-3099(13)70190-7
Nordmann P, Cuzon G, Naas T (2009) The real threat of Klebsiella pneumoniae carbapenemase-producing bacteria. Lancet Infect Dis 9:228–236. https://doi.org/10.1016/S1473-3099(09)70054-4
doi: 10.1016/S1473-3099(09)70054-4
Palzkill T, Le QQ, Venkatachalam KV et al (1994) Evolution of antibiotic resistance: several different amino acid substitutions in an active site loop alter the substrate profile of beta-lactamase. Mol Microbiol 12:217–229
doi: 10.1111/j.1365-2958.1994.tb01011.x
Papp-Wallace KM, Bethel CR, Distler AM et al (2010) Inhibitor resistance in the KPC-2 beta-lactamase, a preeminent property of this class A beta-lactamase. Antimicrob Agents Chemother 54:890–897. https://doi.org/10.1128/AAC.00693-09
doi: 10.1128/AAC.00693-09
Papp-Wallace KM, Winkler ML, Taracila MA, Bonomo RA (2015) Variants of β-lactamase KPC-2 that are resistant to inhibition by avibactam. Antimicrob Agents Chemother 59:3710–3717. https://doi.org/10.1128/AAC.04406-14
doi: 10.1128/AAC.04406-14
Raquet X, Lamotte-Brasseur J, Fonzé E et al (1994) TEM beta-lactamase mutants hydrolysing third-generation cephalosporins. A kinetic and molecular modelling analysis. J Mol Biol 244:625–639. https://doi.org/10.1006/jmbi.1994.1756
doi: 10.1006/jmbi.1994.1756
Shapiro AB (2017) Kinetics of Sulbactam Hydrolysis by β-Lactamases, and Kinetics of β-Lactamase Inhibition by Sulbactam. Antimicrob Agents Chemother 61:e01612–e01617. https://doi.org/10.1128/AAC.01612-17
doi: 10.1128/AAC.01612-17
Shen Y, Delaglio F, Cornilescu G, Bax A (2009) TALOS+: a hybrid method for predicting protein backbone torsion angles from NMR chemical shifts. J Biomol NMR 44:213–223. https://doi.org/10.1007/s10858-009-9333-z
doi: 10.1007/s10858-009-9333-z

Auteurs

Jamie VanPelt (J)

Department of Chemistry and Biochemistry, Miami University, 651 E. High St, Oxford, OH, 45056, USA.

Ben A Shurina (BA)

Department of Chemistry and Biochemistry, Miami University, 651 E. High St, Oxford, OH, 45056, USA.

Theresa A Ramelot (TA)

Department of Chemistry and Biochemistry, Miami University, 651 E. High St, Oxford, OH, 45056, USA.

Robert A Bonomo (RA)

Medical Service and Geriatric Research Education and Clinical Centers, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH, USA.
Departments of Medicine, Pharmacology, Molecular Biology and Microbiology, Biochemistry, Proteomics and Bioinformatics, Case Western Reserve University School of Medicine, Cleveland, OH, USA.
CWRU-Cleveland VAMC Center for Antimicrobial Resistance and Epidemiology (Case VA CARES), Cleveland, OH, USA.

Richard C Page (RC)

Department of Chemistry and Biochemistry, Miami University, 651 E. High St, Oxford, OH, 45056, USA. pagerc@miamioh.edu.

Articles similaires

Gastroenteritis Humans Genome, Bacterial beta-Lactamases Nigeria
Klebsiella pneumoniae Volatile Organic Compounds Metabolomics Ion Mobility Spectrometry Bacterial Proteins
Adult Aged Female Humans Male
Intrinsically Disordered Proteins Protein Conformation Nuclear Magnetic Resonance, Biomolecular Amino Acids Computational Biology

Classifications MeSH