Validation of Altered Umbilical Cord Blood MicroRNA Expression in Neonatal Hypoxic-Ischemic Encephalopathy.
Journal
JAMA neurology
ISSN: 2168-6157
Titre abrégé: JAMA Neurol
Pays: United States
ID NLM: 101589536
Informations de publication
Date de publication:
01 03 2019
01 03 2019
Historique:
pubmed:
29
12
2018
medline:
19
2
2020
entrez:
29
12
2018
Statut:
ppublish
Résumé
Neonatal hypoxic-ischemic encephalopathy (HIE) remains a significant cause of neurologic disability. Identifying infants suitable for therapeutic hypothermia (TH) within a narrow therapeutic time is difficult. No single robust biochemical marker is available to clinicians. To assess the ability of a panel of candidate microRNA (miRNA) to evaluate the development and severity of encephalopathy following perinatal asphyxia (PA). This validation study included 2 cohorts. For the discovery cohort, full-term infants with PA were enrolled at birth to the Biomarkers in Hypoxic-Ischemic Encephalopathy (BiHiVE1) study (2009-2011) in Cork, Ireland. Encephalopathy grade was defined using early electroencephalogram and Sarnat score (n = 68). The BiHiVE1 cohort also enrolled healthy control infants (n = 22). For the validation cohort, the BiHiVE2 multicenter study (2013-2015), based in Cork, Ireland (7500 live births per annum), and Karolinska Huddinge, Sweden (4400 live births per annum), recruited infants with PA along with healthy control infants to validate findings from BiHiVE1 using identical recruitment criteria (n = 80). The experimental design was formulated prior to recruitment, and analysis was conducted from June 2016 to March 2017. Alterations in umbilical cord whole-blood miRNA expression. From 170 neonates, 160 were included in the final analysis. The BiHiVE1 cohort included 87 infants (21 control infants, 39 infants with PA, and 27 infants with HIE), and BiHiVE2 included 73 infants (control [n = 22], PA [n = 26], and HIE [n = 25]). The BiHiVE1 and BiHiVE2 had a median age of 40 weeks (interquartile range [IQR], 39-41 weeks) and 40 weeks (IQR, 39-41 weeks), respectively, and included 56 boys and 31 girls and 45 boys and 28 girls, respectively. In BiHiVE1, 12 candidate miRNAs were identified, and 7 of these miRNAs were chosen for validation in BiHiVE2. The BiHiVE2 cohort showed consistent alteration of 3 miRNAs; miR-374a-5p was decreased in infants diagnosed as having HIE compared with healthy control infants (median relative quantification, 0.38; IQR, 0.17-0.77 vs 0.95; IQR, 0.68-1.19; P = .009), miR-376c-3p was decreased in infants with PA compared with healthy control infants (median, 0.42; IQR, 0.21-0.61 vs 0.90; IQR, 0.70-1.30; P = .004), and mir-181b-5p was decreased in infants eligible for TH (median, 0.27; IQR, 0.14-1.41) vs 1.18; IQR, 0.70-2.05; P = .02). Altered miRNA expression was detected in umbilical cord blood of neonates with PA and HIE. These miRNA could assist diagnostic markers for early detection of HIE and PA at birth.
Identifiants
pubmed: 30592487
pii: 2719465
doi: 10.1001/jamaneurol.2018.4182
pmc: PMC6439719
doi:
Substances chimiques
Biomarkers
0
MicroRNAs
0
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
333-341Références
Pediatr Res. 1994 Dec;36(6):699-706
pubmed: 7898977
Hypertension. 2013 Apr;61(4):864-72
pubmed: 23424236
J Matern Fetal Neonatal Med. 2016;29(8):1200-4
pubmed: 26004985
J Pediatr. 2015 Aug;167(2):269-73.e2
pubmed: 26001314
J Pediatr. 2006 Oct;149(4):486-9
pubmed: 17011319
Neural Regen Res. 2016 Aug;11(8):1285-92
pubmed: 27651777
J Matern Fetal Neonatal Med. 2012 Sep;25(9):1653-9
pubmed: 22233402
BMC Pediatr. 2008 Apr 30;8:17
pubmed: 18447921
Cell Res. 2008 Oct;18(10):997-1006
pubmed: 18766170
Methods. 2001 Dec;25(4):402-8
pubmed: 11846609
Int J Epidemiol. 2015 Jun;44(3):764-75
pubmed: 25102856
Arch Neurol. 1976 Oct;33(10):696-705
pubmed: 987769
Mol Neurobiol. 2019 May;56(5):3657-3663
pubmed: 30178296
Tumour Biol. 2016 Aug;37(8):10177-85
pubmed: 26831660
Biochem Biophys Res Commun. 2016 May 13;473(4):980-986
pubmed: 27049310
Brain Behav. 2017 Dec 30;8(1):e00835
pubmed: 29568675
Nature. 2008 Dec 18;456(7224):980-4
pubmed: 19043405
Cochrane Database Syst Rev. 2013 Jan 31;(1):CD003311
pubmed: 23440789
Cancer Res. 2005 Aug 15;65(16):7065-70
pubmed: 16103053
Immunology. 2012 Jan;135(1):73-88
pubmed: 22043967
J Neurotrauma. 2009 Mar;26(3):437-43
pubmed: 19281415
J Cell Sci. 2011 Feb 1;124(Pt 3):359-68
pubmed: 21224400
Genome Biol. 2014;15(12):550
pubmed: 25516281
Stroke. 1991 Apr;22(4):516-21
pubmed: 2024281
Pediatrics. 2009 Sep;124(3):e459-67
pubmed: 19706569
Proc Natl Acad Sci U S A. 2010 Aug 10;107(32):14339-44
pubmed: 20651252
Proc Natl Acad Sci U S A. 2009 Mar 17;106(11):4402-7
pubmed: 19246379
Mitochondrion. 2012 Mar;12(2):213-9
pubmed: 21958558
Clin Epidemiol. 2009 Aug 09;1:45-53
pubmed: 20865086
J Clin Invest. 2013 Feb;123(2):566-79
pubmed: 23321667
Cochrane Database Syst Rev. 2010 Mar 17;(3):CD006174
pubmed: 20238343
Genet Mol Res. 2016 May 12;15(2):
pubmed: 27323011
Nat Neurosci. 2014 Apr;17(4):506-12
pubmed: 24609463
J Dig Dis. 2010 Feb;11(1):50-4
pubmed: 20132431
Mol Med Rep. 2013 Jun;7(6):1955-9
pubmed: 23591709
Neonatology. 2017;111(2):133-139
pubmed: 27750254
BMC Genomics. 2014 Jun 14;15:474
pubmed: 24928098
Oncotarget. 2016 Jul 5;7(27):41306-41319
pubmed: 27191497
F1000Res. 2014 Aug 05;3:183
pubmed: 26500764
Pediatr Crit Care Med. 2013 Jul;14(6):621-30
pubmed: 23823198
PLoS One. 2008;3(11):e3694
pubmed: 19002258
Neurobiol Dis. 2016 May;89:202-12
pubmed: 26875527