Characterization of the Src-regulated kinome identifies SGK1 as a key mediator of Src-induced transformation.
Animals
Antineoplastic Agents
/ pharmacology
Benzodioxoles
/ pharmacology
Cell Line, Tumor
Cell Transformation, Neoplastic
/ drug effects
Female
Gene Expression Regulation, Neoplastic
Gene Knockdown Techniques
HEK293 Cells
Humans
Immediate-Early Proteins
/ antagonists & inhibitors
Mass Spectrometry
/ methods
Mice, Inbred BALB C
Mice, Nude
Oncogenes
/ genetics
Protein Interaction Mapping
/ methods
Protein Serine-Threonine Kinases
/ antagonists & inhibitors
Proteomics
/ methods
Quinazolines
/ pharmacology
RNA, Small Interfering
/ metabolism
Signal Transduction
/ drug effects
Triple Negative Breast Neoplasms
/ drug therapy
Xenograft Model Antitumor Assays
src-Family Kinases
/ antagonists & inhibitors
Journal
Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555
Informations de publication
Date de publication:
17 01 2019
17 01 2019
Historique:
received:
05
11
2017
accepted:
20
12
2018
entrez:
19
1
2019
pubmed:
19
1
2019
medline:
21
3
2019
Statut:
epublish
Résumé
Despite significant progress, our understanding of how specific oncogenes transform cells is still limited and likely underestimates the complexity of downstream signalling events. To address this gap, we use mass spectrometry-based chemical proteomics to characterize the global impact of an oncogene on the expressed kinome, and then functionally annotate the regulated kinases. As an example, we identify 63 protein kinases exhibiting altered expression and/or phosphorylation in Src-transformed mammary epithelial cells. An integrated siRNA screen identifies nine kinases, including SGK1, as being essential for Src-induced transformation. Accordingly, we find that Src positively regulates SGK1 expression in triple negative breast cancer cells, which exhibit a prominent signalling network governed by Src family kinases. Furthermore, combined inhibition of Src and SGK1 reduces colony formation and xenograft growth more effectively than either treatment alone. Therefore, this approach not only provides mechanistic insights into oncogenic transformation but also aids the design of improved therapeutic strategies.
Identifiants
pubmed: 30655532
doi: 10.1038/s41467-018-08154-1
pii: 10.1038/s41467-018-08154-1
pmc: PMC6336867
doi:
Substances chimiques
Antineoplastic Agents
0
Benzodioxoles
0
Immediate-Early Proteins
0
Quinazolines
0
RNA, Small Interfering
0
saracatinib
9KD24QGH76
src-Family Kinases
EC 2.7.10.2
Protein Serine-Threonine Kinases
EC 2.7.11.1
serum-glucocorticoid regulated kinase
EC 2.7.11.1
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
296Références
Nature. 1995 Feb 9;373(6514):536-9
pubmed: 7845468
Mol Cell. 2008 Aug 8;31(3):438-48
pubmed: 18691976
Cell. 2010 Jun 25;141(7):1117-34
pubmed: 20602996
EMBO J. 2014 Jun 2;33(11):1227-42
pubmed: 24797473
Proc Natl Acad Sci U S A. 1978 Sep;75(9):4102-6
pubmed: 212733
Oncogene. 2008 Apr 24;27(19):2693-704
pubmed: 17998934
Cancer Res. 2009 Mar 15;69(6):2279-86
pubmed: 19276381
Science. 2017 Dec 1;358(6367):
pubmed: 29191878
J Proteome Res. 2008 Aug;7(8):3447-60
pubmed: 18563927
Nucleic Acids Res. 2016 Jan 4;44(D1):D447-56
pubmed: 26527722
Biochem J. 2013 Jun 15;452(3):499-508
pubmed: 23581296
J Am Soc Nephrol. 2010 May;21(5):811-8
pubmed: 20338997
BMC Cancer. 2010 Feb 12;10:41
pubmed: 20152043
Cancer Res. 2005 Feb 15;65(4):1335-42
pubmed: 15735019
EMBO J. 2009 Apr 8;28(7):843-53
pubmed: 19214184
Biochem J. 2005 Oct 15;391(Pt 2):359-70
pubmed: 15975092
Pharmacol Ther. 2015 Feb;146:132-49
pubmed: 25316657
Nat Struct Mol Biol. 2010 Feb;17(2):216-21
pubmed: 20118938
Cancer Cell. 2016 Aug 8;30(2):229-242
pubmed: 27451907
EMBO J. 1998 Aug 3;17(15):4346-57
pubmed: 9687503
Growth Factors. 2010 Dec;28(6):394-408
pubmed: 20919962
Mol Cell. 2009 Jul 10;35(1):11-25
pubmed: 19595712
J Clin Pathol. 2011 Jul;64(7):578-86
pubmed: 21490376
Nat Rev Cancer. 2016 Feb;16(2):83-98
pubmed: 26822576
ChemMedChem. 2017 Jun 21;12(12):954-961
pubmed: 28334506
Cancer. 2002 Jan 15;94(2):344-51
pubmed: 11900220
Nucleic Acids Res. 2013 Jan;41(Database issue):D808-15
pubmed: 23203871
Mol Cell Proteomics. 2012 Aug;11(8):355-69
pubmed: 22499769
PLoS One. 2016 Mar 29;11(3):e0152300
pubmed: 27023625
Sci Rep. 2017 Mar 31;7:45545
pubmed: 28361970
Nat Biotechnol. 2008 Dec;26(12):1367-72
pubmed: 19029910
J Cell Sci. 2004 Mar 1;117(Pt 7):989-98
pubmed: 14996930
J Proteome Res. 2013 Jul 5;12(7):3104-16
pubmed: 23692254
Proteomics. 2015 Jan;15(2-3):232-44
pubmed: 25403792
Crit Rev Oncog. 2012;17(2):145-59
pubmed: 22471705
Oncogene. 2014 Sep 11;33(37):4537-47
pubmed: 24121272
Virology. 2007 Jul 20;364(1):10-20
pubmed: 17448514
Genome Res. 2003 Nov;13(11):2498-504
pubmed: 14597658
J Cell Sci. 2012 Oct 1;125(Pt 19):4423-33
pubmed: 23132929
J Cell Physiol. 2007 Feb;210(2):436-44
pubmed: 17096371
Nat Biotechnol. 2005 Jan;23(1):94-101
pubmed: 15592455
Am J Pathol. 2007 Jan;170(1):366-76
pubmed: 17200208
Oncotarget. 2017 Aug 7;8(41):70736-70751
pubmed: 29050315
Biochem Biophys Res Commun. 2017 Aug 26;490(3):650-656
pubmed: 28634071
Oncogene. 2002 Oct 17;21(47):7256-65
pubmed: 12370817
PLoS One. 2012;7(5):e37803
pubmed: 22662228
Cancer Res. 2010 Jan 15;70(2):440-6
pubmed: 20068163
Nat Biotechnol. 2007 Sep;25(9):1035-44
pubmed: 17721511
Mol Cancer Ther. 2010 Aug;9(8):2322-32
pubmed: 20682659
Cancer Res. 2010 Nov 15;70(22):9391-401
pubmed: 20861192
J Pediatr Endocrinol Metab. 2018 Mar 28;31(3):331-338
pubmed: 29360628
FASEB J. 2010 Jun;24(6):1637-48
pubmed: 20071654
Cancer Res. 2013 Mar 15;73(6):1969-80
pubmed: 23378338
PeerJ. 2013 Aug 08;1:e126
pubmed: 23940838
Pharmacol Res. 2015 Apr;94:9-25
pubmed: 25662515
Curr Opin Cell Biol. 2006 Oct;18(5):516-23
pubmed: 16919435
Mol Cell Proteomics. 2007 Mar;6(3):537-47
pubmed: 17192257
J Biol Chem. 2016 Oct 7;291(41):21571-21583
pubmed: 27531744