Impairment in karrikin but not strigolactone sensing enhances root skewing in Arabidopsis thaliana.
4-Butyrolactone
/ analogs & derivatives
Arabidopsis
/ genetics
Arabidopsis Proteins
/ genetics
Carrier Proteins
/ genetics
Furans
/ metabolism
Gene Expression Regulation, Plant
Hydrolases
/ genetics
Intracellular Signaling Peptides and Proteins
/ genetics
Lactones
/ metabolism
Mutation
Phenotype
Plant Growth Regulators
/ genetics
Plant Roots
/ genetics
Pyrans
/ metabolism
Signal Transduction
Transcriptome
Arabidopsis thaliana
karrikin
root
skewing
strigolactone
waving
Journal
The Plant journal : for cell and molecular biology
ISSN: 1365-313X
Titre abrégé: Plant J
Pays: England
ID NLM: 9207397
Informations de publication
Date de publication:
05 2019
05 2019
Historique:
received:
29
09
2017
revised:
20
12
2018
accepted:
08
01
2019
pubmed:
20
1
2019
medline:
6
5
2020
entrez:
20
1
2019
Statut:
ppublish
Résumé
Roots form highly complex systems varying in growth direction and branching pattern to forage for nutrients efficiently. Here mutations in the KAI2 (KARRIKIN INSENSITIVE) α/β-fold hydrolase and the MAX2 (MORE AXILLARY GROWTH 2) F-box leucine-rich protein, which together perceive karrikins (smoke-derived butenolides), caused alteration in root skewing in Arabidopsis thaliana. This phenotype was independent of endogenous strigolactones perception by the D14 α/β-fold hydrolase and MAX2. Thus, KAI2/MAX2 effect on root growth may be through the perception of endogenous KAI2-ligands (KLs), which have yet to be identified. Upon perception of a ligand, a KAI2/MAX2 complex is formed together with additional target proteins before ubiquitination and degradation through the 26S proteasome. Using a genetic approach, we show that SMAX1 (SUPPRESSOR OF MAX2-1)/SMXL2 and SMXL6,7,8 (SUPPRESSOR OF MAX2-1-LIKE) are also likely degradation targets for the KAI2/MAX2 complex in the context of root skewing. In A. thaliana therefore, KAI2 and MAX2 act to limit root skewing, while kai2's gravitropic and mechano-sensing responses remained largely unaffected. Many proteins are involved in root skewing, and we investigated the link between MAX2 and two members of the SKS/SKU family. Though KLs are yet to be identified in plants, our data support the hypothesis that they are present and can affect root skewing.
Identifiants
pubmed: 30659713
doi: 10.1111/tpj.14233
pmc: PMC6563046
doi:
Substances chimiques
Arabidopsis Proteins
0
Carrier Proteins
0
Furans
0
Intracellular Signaling Peptides and Proteins
0
Lactones
0
MAX2 protein, Arabidopsis
0
Plant Growth Regulators
0
Pyrans
0
SMAX1 protein, Arabidopsis
0
SMXL2 protein, Arabidopsis
0
butenolide
8KXK25H388
HTL protein, Arabidopsis
EC 3.-
Hydrolases
EC 3.-
4-Butyrolactone
OL659KIY4X
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
607-621Subventions
Organisme : Biotechnology and Biological Sciences Research Council
ID : BB/J014540/1
Pays : United Kingdom
Informations de copyright
© 2019 The Authors. The Plant Journal published by John Wiley & Sons Ltd and Society for Experimental Biology.
Références
Planta. 2013 Oct;238(4):615-26
pubmed: 23801297
Science. 2007 Nov 2;318(5851):801-6
pubmed: 17975066
Plant Biol (Stuttg). 2014 Jan;16 Suppl 1:142-50
pubmed: 23952736
Plant Physiol. 2004 Jul;135(3):1822-37
pubmed: 15247406
Front Plant Sci. 2016 Jan 08;6:1219
pubmed: 26779242
Trends Plant Sci. 2007 May;12(5):224-30
pubmed: 17416544
Science. 1990 Oct 12;250(4978):274-6
pubmed: 17797309
Nature. 1991 Aug 8;352(6335):524-6
pubmed: 1865907
Plant Cell. 2015 Nov;27(11):3143-59
pubmed: 26546447
Science. 2015 Dec 18;350(6267):1521-4
pubmed: 26680197
J Exp Bot. 2016 Jan;67(1):379-89
pubmed: 26519957
Plant Physiol. 2012 Nov;160(3):1329-41
pubmed: 22968830
Plant Cell. 2015 Jul;27(7):1925-44
pubmed: 26175507
Plant Cell. 2004 Jun;16(6):1506-20
pubmed: 15155883
Front Plant Sci. 2016 Dec 02;7:1799
pubmed: 27994609
Mol Plant. 2013 Jan;6(1):63-75
pubmed: 23142794
J Exp Bot. 2014 Dec;65(22):6735-46
pubmed: 24596173
Plant Physiol. 2014 May 7;165(3):1221-1232
pubmed: 24808100
Annu Rev Plant Biol. 2015;66:161-86
pubmed: 25621512
Plant Physiol. 2013 Sep;163(1):318-30
pubmed: 23893171
Plant Signal Behav. 2016;11(1):e1110662
pubmed: 26515106
G3 (Bethesda). 2011 Jul;1(2):105-15
pubmed: 22384323
Plant Sci. 2014 May;221-222:42-7
pubmed: 24656334
BMC Plant Biol. 2012 Dec 07;12:231
pubmed: 23217095
Mol Plant. 2011 Jan;4(1):116-26
pubmed: 20864454
Genes Dev. 2003 Jun 15;17(12):1469-74
pubmed: 12815068
BMC Plant Biol. 2012 Dec 07;12:232
pubmed: 23217113
J Exp Bot. 2010 Jun;61(6):1739-49
pubmed: 20194924
Nature. 2007 Aug 9;448(7154):661-5
pubmed: 17637677
Cell. 1990 Feb 9;60(3):357-64
pubmed: 2302732
PLoS Genet. 2017 Jun 12;13(6):e1006832
pubmed: 28604776
Plant Physiol. 2009 Feb;149(2):863-73
pubmed: 19074625
Curr Biol. 2017 Apr 24;27(8):1241-1247
pubmed: 28392107
Nature. 2001 Nov 15;414(6861):271-6
pubmed: 11713520
Curr Biol. 2014 Aug 18;24(16):1887-92
pubmed: 25127214
Nature. 2013 Dec 19;504(7480):406-10
pubmed: 24336215
Bioinspir Biomim. 2013 Jun;8(2):025004
pubmed: 23648942
Plant Physiol. 2012 Apr;158(4):1976-87
pubmed: 22323776
Proc Natl Acad Sci U S A. 2010 Apr 13;107(15):7095-100
pubmed: 20351290
Trends Plant Sci. 2001 Dec;6(12):561-5
pubmed: 11738380
Mol Plant. 2015 May;8(5):814-7
pubmed: 25698586
Nat Commun. 2020 Mar 9;11(1):1264
pubmed: 32152287
Plant Cell. 2014 Mar;26(3):1134-50
pubmed: 24610723
Development. 2010 Sep 1;137(17):2905-13
pubmed: 20667910
J Biol Chem. 2004 Nov 5;279(45):46940-5
pubmed: 15342640
Plant Physiol. 2014 Oct;166(2):560-9
pubmed: 25037210
PLoS One. 2007 Aug 08;2(8):e718
pubmed: 17684564
Mol Cell Proteomics. 2016 Aug;15(8):2744-55
pubmed: 27317401
Planta. 2011 Jan;233(1):209-16
pubmed: 21080198
Plant Physiol. 2011 Aug;156(4):1851-66
pubmed: 21666052
Plant Cell. 2004 Jun;16(6):1392-405
pubmed: 15155881
Planta. 2016 Jun;243(6):1327-37
pubmed: 26895337
New Phytol. 2018 Jan;217(2):552-557
pubmed: 29194644
PLoS One. 2013;8(1):e54758
pubmed: 23349965
Dev Cell. 2012 Jun 12;22(6):1275-85
pubmed: 22698285
Development. 2012 Apr;139(7):1285-95
pubmed: 22357928
Plant Physiol. 2011 Feb;155(2):974-87
pubmed: 21119045
Plant Cell. 2002 Jul;14(7):1635-48
pubmed: 12119380
Curr Biol. 2004 Jul 27;14(14):1232-8
pubmed: 15268852
J Exp Bot. 2018 Apr 23;69(9):2367-2378
pubmed: 29538714
Bioinformatics. 2008 Jul 1;24(13):1549-51
pubmed: 18482995
Nat Chem Biol. 2016 Oct;12(10):787-794
pubmed: 27479744
Cytometry A. 2004 Apr;58(2):167-76
pubmed: 15057970
Plant Cell. 2012 Apr;24(4):1522-33
pubmed: 22523205
J Exp Bot. 2018 Jun 27;69(15):3609-3623
pubmed: 29722815
Plant Cell Physiol. 2000 Oct;41(10):1164-70
pubmed: 11148276
BMC Plant Biol. 2017 Feb 1;17(1):31
pubmed: 28143395
Curr Biol. 2012 Dec 4;22(23):2242-6
pubmed: 23122843
Plant Physiol. 2014 Apr;164(4):2054-67
pubmed: 24550243
PLoS Biol. 2013;11(1):e1001474
pubmed: 23382651
Genes Dev. 1997 Nov 15;11(22):2983-95
pubmed: 9367981
Plant Physiol. 2003 Jun;132(2):1085-96
pubmed: 12805636
Cell Res. 2015 Nov;25(11):1219-36
pubmed: 26470846
Chem Biol. 2014 Aug 14;21(8):988-98
pubmed: 25126711
Plant Physiol. 2011 Feb;155(2):721-34
pubmed: 21119044
Nature. 2016 Aug 25;536(7617):469-73
pubmed: 27479325
Proc Natl Acad Sci U S A. 2011 May 24;108(21):8897-902
pubmed: 21555559
BMC Biol. 2015 Dec 21;13:108
pubmed: 26689715
Nat Methods. 2012 Jul;9(7):671-5
pubmed: 22930834
Nature. 2013 Dec 19;504(7480):401-5
pubmed: 24336200
Curr Biol. 2012 Nov 6;22(21):2032-6
pubmed: 22959345
New Phytol. 2007;176(1):37-43
pubmed: 17692076
PLoS Genet. 2017 Nov 13;13(11):e1007076
pubmed: 29131815
Annu Rev Plant Biol. 2017 Apr 28;68:291-322
pubmed: 28125281
Development. 2002 Mar;129(5):1131-41
pubmed: 11874909
Plant J. 2006 Dec;48(6):962-73
pubmed: 17227550
New Phytol. 2005 Feb;165(2):641-51
pubmed: 15720674