Microbial residence time is a controlling parameter of the taxonomic composition and functional profile of microbial communities.


Journal

The ISME journal
ISSN: 1751-7370
Titre abrégé: ISME J
Pays: England
ID NLM: 101301086

Informations de publication

Date de publication:
06 2019
Historique:
received: 07 08 2018
accepted: 01 02 2019
revised: 29 01 2019
pubmed: 23 2 2019
medline: 23 11 2019
entrez: 22 2 2019
Statut: ppublish

Résumé

A remaining challenge within microbial ecology is to understand the determinants of richness and diversity observed in environmental microbial communities. In a range of systems, including activated sludge bioreactors, the microbial residence time (MRT) has been previously shown to shape the microbial community composition. However, the physiological and ecological mechanisms driving this influence have remained unclear. Here, this relationship is explored by analyzing an activated sludge system fed with municipal wastewater. Using a model designed in this study based on Monod-growth kinetics, longer MRTs were shown to increase the range of growth parameters that enable persistence, resulting in increased richness and diversity in the modeled community. In laboratory experiments, six sequencing batch reactors treating domestic wastewater were operated in parallel at MRTs between 1 and 15 days. The communities were characterized using both 16S ribosomal RNA and non-target messenger RNA sequencing (metatranscriptomic analysis), and model-predicted monotonic increases in richness were confirmed in both profiles. Accordingly, taxonomic Shannon diversity also increased with MRT. In contrast, the diversity in enzyme class annotations resulting from the metatranscriptomic analysis displayed a non-monotonic trend over the MRT gradient. Disproportionately high abundances of transcripts encoding for rarer enzymes occur at longer MRTs and lead to the disconnect between taxonomic and functional diversity profiles.

Identifiants

pubmed: 30787397
doi: 10.1038/s41396-019-0371-6
pii: 10.1038/s41396-019-0371-6
pmc: PMC6544533
mid: EMS81648
doi:

Substances chimiques

DNA, Bacterial 0
RNA, Ribosomal, 16S 0
Sewage 0
Waste Water 0

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

1589-1601

Subventions

Organisme : European Research Council
ID : 614768
Pays : International

Références

Curtis TP, Sloan WT, Scannell JW. Estimating prokaryotic diversity and its limits. Proc Natl Acad Sci USA. 2002;99:10494–9.
doi: 10.1073/pnas.142680199
Locey KJ, Lennon JT. Scaling laws predict global microbial diversity. Proc Natl Acad Sci USA. 2016;113:5970–5.
doi: 10.1073/pnas.1521291113
Antwis RE, Griffiths SM, Harrison XA, Aranega-Bou P, Arce A, Bettridge AS, et al. Fifty important research questions in microbial ecology. FEMS Microbiol Ecol. 2017;93:1–10.
Vuono DC, Benecke J, Henkel J, Navidi WC, Cath TY, Munakata-Marr J, et al. Disturbance and temporal partitioning of the activated sludge metacommunity. ISME J. 2015;9:425–35.
doi: 10.1038/ismej.2014.139
Meerburg FA, Vlaeminck SE, Roume H, Seuntjens D, Pieper DH, Jauregui R, et al. High-rate activated sludge communities have a distinctly different structure compared to low-rate sludge communities, and are less sensitive towards environmental and operational variables. Water Res. 2016;100:137–45.
doi: 10.1016/j.watres.2016.04.076
Bagchi S, Tellez BG, Rao HA, Lamendella R, Saikaly PE. Diversity and dynamics of dominant and rare bacterial taxa in replicate sequencing batch reactors operated under different solids retention time. Appl Microbiol Biotechnol. 2015;99:2361–70.
doi: 10.1007/s00253-014-6134-4
Akarsubasi AT, Eyice O, Miskin I, Head IM, Curtis TP. Effect of sludge age on the bacterial diversity of bench scale sequencing batch reactors. Environ Sci Technol. 2009;43:2950–6.
doi: 10.1021/es8026488
Fang H, Chen Y, Huang L, He G. Analysis of biofilm bacterial communities under different shear stresses using size-fractionated sediment. Sci Rep. 2017;7:1299.
doi: 10.1038/s41598-017-01446-4
Roager HM, Hansen LB, Bahl MI, Frandsen HL, Carvalho V, Gøbel RJ, et al. Colonic transit time is related to bacterial metabolism and mucosal turnover in the gut. Nat Microbiol. 2016;1:16093.
doi: 10.1038/nmicrobiol.2016.93
Kreuzinger N, Clara M, Strenn B, Kroiss H. Relevance of the sludge retention time (SRT) as design criteria for wastewater treatment plants for the removal of endocrine disruptors and pharmaceuticals from wastewater. Water Sci Technol. 2004;50:149–56.
doi: 10.2166/wst.2004.0322
Falås P, Andersen HR, Ledin A, la Cour Jansen J. Impact of solid retention time and nitrification capacity on the ability of activated sludge to remove pharmaceuticals. Environ Technol. 2012;33:865–72.
doi: 10.1080/09593330.2011.601764
Johnson DR, Lee TK, Park J, Fenner K, Helbling DE. The functional and taxonomic richness of wastewater treatment plant microbial communities are associated with each other and with ambient nitrogen and carbon availability. Environ Microbiol. 2015;17:4851–60.
doi: 10.1111/1462-2920.12429
Pholchan MK, Baptista JDC, Davenport RJ, Sloan WT, Curtis TP. Microbial community assembly, theory and rare functions. Front Microbiol. 2013;4:68.
doi: 10.3389/fmicb.2013.00068
Louca S, Parfrey LW, Doebeli M. Decoupling function and taxonomy in the global ocean microbiome. Science. 2016;353:1272–7.
doi: 10.1126/science.aaf4507
Louca S, Jacques SM, Pires AP, Leal JS, Srivastava DS, Parfrey LW, et al. High taxonomic variability despite stable functional structure across microbial communities. Nat Ecol Evol. 2017;1:0015.
doi: 10.1038/s41559-016-0015
Frossard A, Gerull L, Mutz M, Gessner MO. Disconnect of microbial structure and function: enzyme activities and bacterial communities in nascent stream corridors. ISME J. 2012;6:680–91.
doi: 10.1038/ismej.2011.134
Purahong W, Schloter M, Pecyna MJ, Kapturska D, Däumlich V, Mital S, et al. Uncoupling of microbial community structure and function in decomposing litter across beech forest ecosystems in CentralEurope. Sci Rep. 2014;4:7014.
doi: 10.1038/srep07014
Kivlin SN, Hawkes CV. Temporal and spatial variation of soil bacteria richness, composition, and function in a neotropical rainforest. PLoS ONE. 2016;11:e0159131.
doi: 10.1371/journal.pone.0159131
Burke C, Steinberg P, Rusch D, Kjelleberg S, Thomas T. Bacterial community assembly based on functional genes rather than species. Proc Natl Acad Sci USA. 2011;108:14288–93.
doi: 10.1073/pnas.1101591108
Boon E, Meehan CJ, Whidden C, Wong DHJ, Langille MG, Beiko RG. Interactions in the microbiome: communities of organisms and communities of genes. FEMS Microbiol Rev. 2014;38:90–118.
doi: 10.1111/1574-6976.12035
Daims H, Taylor MW, Wagner M. Wastewater treatment: a model system for microbial ecology. Trends Biotechnol. 2006;24:483–9.
doi: 10.1016/j.tibtech.2006.09.002
Downing AL, Hopwood AP. Some observations on the kinetics of nitrifying activated-sludge plants. Schweiz Z Hydrol. 1964;26:271–88.
Lawrence AW, McCarty PL. Unified basis for biological treatment design and operation. J Sanit Eng Div. 1970;96:757–78.
Henze M, Gujer W, Mino T, Van Loosdrecht MCM. Activated sludge models ASM1, ASM2, ASM2d and ASM3. IWA publishing; London, UK, 2000.
doi: 10.2166/9781780402369
Degnan PH, Ochman H. Illumina-based analysis of microbial community diversity. ISME J. 2012;6:183–94.
doi: 10.1038/ismej.2011.74
Sinclair L, Osman OA, Bertilsson S, Eiler A. Microbial community composition and diversity via 16S rRNA gene amplicons: evaluating the illumina platform. PLoS ONE. 2015;10:e0116955.
doi: 10.1371/journal.pone.0116955
Knight R, Vrbanac A, Taylor BC, Aksenov A, Callewaert C, Debelius J, et al. Best practices for analysing microbiomes. Nat Rev Microbiol. 2018;16:410–22.
doi: 10.1038/s41579-018-0029-9
van Bodegom P. Microbial maintenance: a critical review on its quantification. Microb Ecol. 2007;53:513–23.
doi: 10.1007/s00248-006-9049-5
Achermann S, Falas P, Joss A, Mansfeldt C, Men Y, Vogler B, et al. Trends in micropollutant biotransformation along a solids retention time gradient. Environ Sci Technol. 2018;52:11601–11.
doi: 10.1021/acs.est.7b06716
Guo F, Ju F, Cai L, Zhang T. Taxonomic precision of different hypervariable regions of 16S rRNA gene and annotation methods for functional bacterial groups in biological wastewater treatment. PLoS ONE. 2013;8:e76185.
doi: 10.1371/journal.pone.0076185
Andrews S. FastQC: a quality control tool for high throughput sequence data. 2010. http://www.bioinformatics.babraham.ac.uk/projects/fastqc/ .
Schmieder R, Edwards R. Quality control and preprocessing of metagenomic datasets. Bioinformatics. 2011;27:863–4.
doi: 10.1093/bioinformatics/btr026
Edgar RC. Search and clustering orders of magnitude faster than BLAST. Bioinformatics. 2010;26:2460–1.
doi: 10.1093/bioinformatics/btq461
Martin M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet. 2011;17:10.
doi: 10.14806/ej.17.1.200
McMurdie PJ, Holmes S. phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE. 2013;8:e61217.
doi: 10.1371/journal.pone.0061217
Hill MO. Diversity and evenness: a unifying notation and its consequences. Ecology. 1973;54:427–32.
doi: 10.2307/1934352
Chao A, Chiu CH, Jost L. Phylogenetic diversity measures based on Hill numbers. Philos Trans R Soc B—Biol Sci. 2010;365:3599–609.
doi: 10.1098/rstb.2010.0272
Chao A, Gotelli NJ, Hsieh TC, Sander EL, Ma KH, Colwell RK, et al. Rarefaction and extrapolation with Hill numbers: a framework for sampling and estimation in species diversity studies. Ecol Monogr. 2014;84:45–67.
doi: 10.1890/13-0133.1
Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30:2114–20.
doi: 10.1093/bioinformatics/btu170
Kopylova E, Noé L, Touzet H. SortMeRNA: fast and accurate filtering of ribosomal RNAs in metatranscriptomic data. Bioinformatics. 2012;28:3211–7.
doi: 10.1093/bioinformatics/bts611
Buchfink B, Xie C, Huson DH. Fast and sensitive protein alignment using DIAMOND. Nat Methods. 2015;12:59–60.
doi: 10.1038/nmeth.3176
Monod J. The growth of bacterial cultures. Annu Rev Microbiol. 1949;3:371–94.
doi: 10.1146/annurev.mi.03.100149.002103
Liu G, Wang J. Modeling effects of DO and SRT on activated sludge decay and production. Water Res. 2015;80:169–78.
doi: 10.1016/j.watres.2015.04.042
Saikaly PE, Oerther DB. Bacterial competition in activated sludge: theoretical analysis of varying solids retention times on diversity. Microb Ecol. 2004;48:274–84.
doi: 10.1007/s00248-003-1027-6
Hsu SB, Hubbell S, Waltman P. A mathematical theory for single-nutrient competition in continuous cultures of micro-organisms. SIAM J Appl Math. 1977;32:366–83.
doi: 10.1137/0132030
Saikaly PE, Oerther DB. Diversity of dominant bacterial taxa in activated sludge promotes functional resistance following toxic shock loading. Microb Ecol. 2011;61:557–67.
doi: 10.1007/s00248-010-9783-6
Habermacher J, Benetti AD, Derlon N, Morgenroth E. The effect of different aeration conditions in activated sludge–side-stream system on sludge production, sludge degradation rates, active biomass and extracellular polymeric substances. Water Res. 2015;85:46–56.
doi: 10.1016/j.watres.2015.08.002
Martínez-García CG, Fall C, Olguín MT. Activated sludge mass reduction and biodegradability of the endogenous residues by digestion under different aerobic to anaerobic conditions: comparison and modeling. Bioresour Technol. 2016;203:32–41.
doi: 10.1016/j.biortech.2015.12.015
Friedrich M, Takács I. A new interpretation of endogenous respiration profiles for the evaluation of the endogenous decay rate of heterotrophic biomass in activated sludge. Water Res. 2013;47:5639–46.
doi: 10.1016/j.watres.2013.06.043
Friedrich M, Jimenez J, Pruden A, Miller JH, Metch J, Takács I. Rethinking growth and decay kinetics in activated sludge–towards a new adaptive kinetics approach. Water Sci Technol. 2017;75:501–6.
doi: 10.2166/wst.2016.439
Soetaert KER, Petzoldt T, Setzer RW. (2010). Solving differential equations in R: package deSolve. J Stat Softw. 2010;33:1–25.
Duan L, Moreno-Andrade I, Huang CL, Xia S, Hermanowicz SW. Effects of short solids retention time on microbial community in a membrane bioreactor. Bioresour Technol. 2009;100:3489–96.
doi: 10.1016/j.biortech.2009.02.056
Saikaly PE, Stroot PG, Oerther DB. Use of 16S rRNA gene terminal restriction fragment analysis to assess the impact of solids retention time on the bacterial diversity of activated sludge. Appl Environ Microbiol. 2005;71:5814–22.
doi: 10.1128/AEM.71.10.5814-5822.2005
Gonzalez-Martinez A, Rodriguez-Sanchez A, Lotti T, Garcia-Ruiz MJ, Osorio F, Gonzalez-Lopez J, et al. Comparison of bacterial communities of conventional and A-stage activated sludge systems. Sci Rep. 2016;6:18786.
doi: 10.1038/srep18786
Zhang T, Shao MF, Ye L. 454 Pyrosequencing reveals bacterial diversity of activated sludge from 14 sewage treatment plants. ISME J. 2011;6:1137–47.
doi: 10.1038/ismej.2011.188
Saunders AM, Albertsen M, Vollertsen J, Nielsen PH. The activated sludge ecosystem contains a core community of abundant organisms. ISME J. 2016;10:11–20.
doi: 10.1038/ismej.2015.117
Pollice A, Tandoi V, Lestingi C. Influence of aeration and sludge retention time on ammonium oxidation to nitrite and nitrate. Water Res. 2002;36:2541–6.
doi: 10.1016/S0043-1354(01)00468-7
Jiang L. Negative selection effects suppress relationships between bacterial diversity and ecosystem functioning. Ecology. 2007;88:1075–85.
doi: 10.1890/06-1556
Prosser JI, Head IM, Stein LY. The family Nitrosomonadaceae. In: Rosenberg E, DeLong EF, Lory S, Stackebrandt E, Thompso F (eds.). The Prokaryotes, Berlin, Heidelberg: Springer; 2014. p. 901–18.
Vuono DC, Regnery J, Li D, Jones ZL, Holloway RW, Drewes JE. rRNA gene expression of abundant and rare activated-sludge microorganisms and growth rate induced micropollutant removal. Environ Sci Technol. 2016;50:6299–309.
doi: 10.1021/acs.est.6b00247
Grime JP, Pierce S. The evolutionary strategies that shape ecosystems. John Wiley & Sons; West Sussex, UK, 2012.
Ho A, Di Lonardo DP, Bodelier PL. Revisiting life strategy concepts in environmental microbial ecology. FEMS Microbiol Ecol. 2017;93:1–14.
Andrews JH, Harris RF. r-and K-selection and microbial ecology. In: Marshall KC (ed.). Advances in microbial ecology, Boston, MA: Springer; 1986. p. 99–147.
doi: 10.1007/978-1-4757-0611-6_3
Větrovský T, Baldrian P. The variability of the 16S rRNA gene in bacterial genomes and its consequences for bacterial community analyses. PLoS ONE. 2013;8:e57923.
doi: 10.1371/journal.pone.0057923
Chandran K, Smets BF. Estimating biomass yield coefficients for autotrophic ammonia and nitrite oxidation from batch respirograms. Water Res. 2001;35:3153–6.
doi: 10.1016/S0043-1354(01)00022-7
Friedrich M, Takács I, Tränckner J. Physiological adaptation of growth kinetics in activated sludge. Water Res. 2015;85:22–30.
doi: 10.1016/j.watres.2015.08.010
Vuono DC, Munakata‐Marr J, Spear JR, Drewes JE. Disturbance opens recruitment sites for bacterial colonization in activated sludge. Environ Microbiol. 2016;18:87–99.
doi: 10.1111/1462-2920.12824
Blazewicz SJ, Barnard RL, Daly RA, Firestone MK. Evaluating rRNA as an indicator of microbial activity in environmental communities: limitations and uses. ISME J. 2013;7:2061–8.
doi: 10.1038/ismej.2013.102
Yu K, Zhang T. Metagenomic and metatranscriptomic analysis of microbial community structure and gene expression of activated sludge. PLoS ONE. 2012;7:e38183.
doi: 10.1371/journal.pone.0038183
Prosser JI. Dispersing misconceptions and identifying opportunities for the use of omics’ in soil microbial ecology. Nat Rev Microbiol. 2015;13:439–46.
doi: 10.1038/nrmicro3468
Bar-Even A, Noor E, Savir Y, Liebermeister W, Davidi D, Tawfik DS, et al. The moderately efficient enzyme: evolutionary and physicochemical trends shaping enzyme parameters. Biochemistry. 2011;50:4402–10.
doi: 10.1021/bi2002289
de Sousa Abreu R, Penalva LO, Marcotte EM, Vogel C. Global signatures of protein and mRNA expression levels. Mol Biosyst. 2009;5:1512–26.
pubmed: 20023718
Vogel C, Marcotte EM. Insights into the regulation of protein abundance from proteomic and transcriptomic analyses. Nat Rev Genet. 2012;13:227–32.
doi: 10.1038/nrg3185
Daims H, Lücker S, Wagner M. A new perspective on microbes formerly known as nitrite-oxidizing bacteria. Trends Microbiol. 2016;24:699–712.
doi: 10.1016/j.tim.2016.05.004
Salvado H. Effect of mean cellular retention time on ciliated protozoan populations in urban wastewater treatment plants based on a proposed model. Water Res. 1994;28:1315–21.
doi: 10.1016/0043-1354(94)90296-8

Auteurs

Cresten Mansfeldt (C)

Department of Environmental Chemistry, Swiss Federal Institute of Aquatic Science and Technology, Eawag, Überlandstrasse 133, 8600, Dübendorf, Switzerland. cresten.mansfeldt@eawag.ch.

Stefan Achermann (S)

Department of Environmental Chemistry, Swiss Federal Institute of Aquatic Science and Technology, Eawag, Überlandstrasse 133, 8600, Dübendorf, Switzerland.
Institute of Biogeochemistry and Pollutant Dynamics, ETH Zürich, 8092, Zürich, Switzerland.

Yujie Men (Y)

Department of Civil and Environmental Engineering, University of Illinois, 205N. Mathews Ave., Urbana, IL, 61801, USA.

Jean-Claude Walser (JC)

Department of Environmental Systems Science, Genetic Diversity Centre, ETH Zürich, Universitätstrasse 16, 8006, Zürich, Switzerland.

Kris Villez (K)

Department of Process Engineering, Swiss Federal Institute of Aquatic Science and Technology, Eawag, Überlandstrasse 133, 8600, Dübendorf, Switzerland.

Adriano Joss (A)

Department of Process Engineering, Swiss Federal Institute of Aquatic Science and Technology, Eawag, Überlandstrasse 133, 8600, Dübendorf, Switzerland.

David R Johnson (DR)

Department of Environmental Microbiology, Swiss Federal Institute of Aquatic Science and Technology, Eawag, Überlandstrasse 133, 8600, Dübendorf, Switzerland.

Kathrin Fenner (K)

Department of Environmental Chemistry, Swiss Federal Institute of Aquatic Science and Technology, Eawag, Überlandstrasse 133, 8600, Dübendorf, Switzerland.
Institute of Biogeochemistry and Pollutant Dynamics, ETH Zürich, 8092, Zürich, Switzerland.
Department of Chemistry, University of Zürich, Winterthurerstrasse 190, 8057, Zürich, Switzerland.

Articles similaires

Genome, Chloroplast Phylogeny Genetic Markers Base Composition High-Throughput Nucleotide Sequencing
Animals Hemiptera Insect Proteins Phylogeny Insecticides
Populus Soil Microbiology Soil Microbiota Fungi
Amaryllidaceae Alkaloids Lycoris NADPH-Ferrihemoprotein Reductase Gene Expression Regulation, Plant Plant Proteins

Classifications MeSH