A theoretical analysis of single molecule protein sequencing via weak binding spectra.
Journal
PloS one
ISSN: 1932-6203
Titre abrégé: PLoS One
Pays: United States
ID NLM: 101285081
Informations de publication
Date de publication:
2019
2019
Historique:
received:
27
07
2018
accepted:
11
02
2019
entrez:
29
3
2019
pubmed:
29
3
2019
medline:
28
11
2019
Statut:
epublish
Résumé
We propose and theoretically study an approach to massively parallel single molecule peptide sequencing, based on single molecule measurement of the kinetics of probe binding (Havranek, et al., 2013) to the N-termini of immobilized peptides. Unlike previous proposals, this method is robust to both weak and non-specific probe-target affinities, which we demonstrate by applying the method to a range of randomized affinity matrices consisting of relatively low-quality binders. This suggests a novel principle for proteomic measurement whereby highly non-optimized sets of low-affinity binders could be applicable for protein sequencing, thus shifting the burden of amino acid identification from biomolecular design to readout. Measurement of probe occupancy times, or of time-averaged fluorescence, should allow high-accuracy determination of N-terminal amino acid identity for realistic probe sets. The time-averaged fluorescence method scales well to weakly-binding probes with dissociation constants of tens or hundreds of micromolar, and bypasses photobleaching limitations associated with other fluorescence-based approaches to protein sequencing. We argue that this method could lead to an approach with single amino acid resolution and the ability to distinguish many canonical and modified amino acids, even using highly non-optimized probe sets. This readout method should expand the design space for single molecule peptide sequencing by removing constraints on the properties of the fluorescent binding probes.
Identifiants
pubmed: 30921350
doi: 10.1371/journal.pone.0212868
pii: PONE-D-18-22244
pmc: PMC6438480
doi:
Substances chimiques
Fluorescent Dyes
0
Peptides
0
Types de publication
Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, Non-P.H.S.
Langues
eng
Sous-ensembles de citation
IM
Pagination
e0212868Subventions
Organisme : NIBIB NIH HHS
ID : R01 EB024261
Pays : United States
Organisme : NIMH NIH HHS
ID : R01 MH114031
Pays : United States
Organisme : NINDS NIH HHS
ID : DP1 NS087724
Pays : United States
Organisme : Howard Hughes Medical Institute
Pays : United States
Déclaration de conflit d'intérêts
The authors have declared that no competing interests exist.
Références
Anal Biochem. 2003 Sep 1;320(1):55-65
pubmed: 12895469
Science. 2001 Aug 17;293(5533):1289-92
pubmed: 11509722
Proc Natl Acad Sci U S A. 2018 Mar 27;115(13):3338-3343
pubmed: 29531063
Trends Biochem Sci. 2013 Jan;38(1):30-7
pubmed: 23200186
Nat Biotechnol. 2013 Mar;31(3):247-50
pubmed: 23376966
J Vis Exp. 2014 Apr 24;(86):
pubmed: 24797261
Sensors (Basel). 2014 Oct 31;14(11):20602-19
pubmed: 25365460
Proc Natl Acad Sci U S A. 2006 Dec 12;103(50):18911-6
pubmed: 17142314
Protein Sci. 2014 Mar;23(3):312-20
pubmed: 24407908
Methods Enzymol. 2010;472:1-18
pubmed: 20580956
PLoS Comput Biol. 2017 May 9;13(5):e1005356
pubmed: 28486472
ACS Appl Mater Interfaces. 2014 Nov 26;6(22):20378-84
pubmed: 25338002
Proc Natl Acad Sci U S A. 2003 Apr 1;100(7):3960-4
pubmed: 12651960
Nat Methods. 2018 Mar;15(3):201-206
pubmed: 29334379
Nat Biotechnol. 2000 Jun;18(6):630-4
pubmed: 10835600
Proc Natl Acad Sci U S A. 2013 Jul 2;110(27):10899-903
pubmed: 23776245
Phys Biol. 2015 Aug 12;12(5):055003
pubmed: 26266455
Angew Chem Int Ed Engl. 2008;47(29):5465-9
pubmed: 18601270
PLoS Comput Biol. 2015 Feb 25;11(2):e1004080
pubmed: 25714988
Methods Mol Biol. 2011;745:447-61
pubmed: 21660710
ACS Chem Biol. 2011 Oct 21;6(10):1015-20
pubmed: 21812462
Nature. 2007 Feb 1;445(7127):519-22
pubmed: 17268465
FEBS Lett. 1999 Nov 26;462(1-2):43-6
pubmed: 10580088
Proc Natl Acad Sci U S A. 2004 Sep 28;101(39):14017-22
pubmed: 15365183
Proteomics. 2011 Dec;11(24):4731-5
pubmed: 22038904
Nat Nanotechnol. 2011 Feb;6(2):126-32
pubmed: 21258331
Science. 2003 Jan 31;299(5607):682-6
pubmed: 12560545
Proc Natl Acad Sci U S A. 1995 Feb 28;92(5):1254-6
pubmed: 7877964
Nat Biotechnol. 2018 Oct 22;:
pubmed: 30346938
Eur J Biochem. 1971 May 11;20(1):89-102
pubmed: 5578618
Nat Methods. 2011 Nov 06;8(12):1027-36
pubmed: 22056676
Nature. 2008 Nov 6;456(7218):53-9
pubmed: 18987734
Phys Biol. 2015 Jun 29;12(4):045006
pubmed: 26118480
Nat Biotechnol. 2012 Nov;30(11):1084-94
pubmed: 23138308
J R Soc Interface. 2011 Oct 7;8(63):1400-8
pubmed: 21325313
Proc Natl Acad Sci U S A. 2016 May 10;113(19):5233-8
pubmed: 27091962
Nat Rev Genet. 2004 May;5(5):335-44
pubmed: 15143316
Science. 2015 Apr 10;348(6231):1250834
pubmed: 25859050
Nano Lett. 2010 Nov 10;10(11):4756-61
pubmed: 20957983
Biophys J. 2017 Nov 7;113(9):2037-2054
pubmed: 29117527
Nature. 2011 Jul 20;475(7356):348-52
pubmed: 21776081
Curr Opin Biotechnol. 2011 Feb;22(1):75-80
pubmed: 21036593