Synergy of topoisomerase and structural-maintenance-of-chromosomes proteins creates a universal pathway to simplify genome topology.
Brownian dynamics
SMC proteins
entanglements
genome topology
topoisomerase
Journal
Proceedings of the National Academy of Sciences of the United States of America
ISSN: 1091-6490
Titre abrégé: Proc Natl Acad Sci U S A
Pays: United States
ID NLM: 7505876
Informations de publication
Date de publication:
23 04 2019
23 04 2019
Historique:
pubmed:
10
4
2019
medline:
24
3
2020
entrez:
10
4
2019
Statut:
ppublish
Résumé
Topological entanglements severely interfere with important biological processes. For this reason, genomes must be kept unknotted and unlinked during most of a cell cycle. Type II topoisomerase (TopoII) enzymes play an important role in this process but the precise mechanisms yielding systematic disentanglement of DNA in vivo are not clear. Here we report computational evidence that structural-maintenance-of-chromosomes (SMC) proteins-such as cohesins and condensins-can cooperate with TopoII to establish a synergistic mechanism to resolve topological entanglements. SMC-driven loop extrusion (or diffusion) induces the spatial localization of essential crossings, in turn catalyzing the simplification of knots and links by TopoII enzymes even in crowded and confined conditions. The mechanism we uncover is universal in that it does not qualitatively depend on the specific substrate, whether DNA or chromatin, or on SMC processivity; we thus argue that this synergy may be at work across organisms and throughout the cell cycle.
Identifiants
pubmed: 30962387
pii: 1815394116
doi: 10.1073/pnas.1815394116
pmc: PMC6486742
doi:
Substances chimiques
Cell Cycle Proteins
0
Chromatin
0
Chromosomal Proteins, Non-Histone
0
DNA-Binding Proteins
0
Multiprotein Complexes
0
condensin complexes
0
DNA
9007-49-2
Adenosine Triphosphatases
EC 3.6.1.-
DNA Topoisomerases, Type II
EC 5.99.1.3
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
8149-8154Subventions
Organisme : European Research Council
Pays : International
Informations de copyright
Copyright © 2019 the Author(s). Published by PNAS.
Déclaration de conflit d'intérêts
The authors declare no conflict of interest.
Références
J Mol Biol. 1999 Feb 26;286(3):637-43
pubmed: 10024438
Nature. 1999 Oct 28;401(6756):932-5
pubmed: 10553912
Proc Natl Acad Sci U S A. 2001 Mar 13;98(6):3045-9
pubmed: 11248029
Annu Rev Genet. 2001;35:673-745
pubmed: 11700297
Science. 2002 Feb 15;295(5558):1306-11
pubmed: 11847345
Proc Natl Acad Sci U S A. 2002 Apr 16;99(8):5373-7
pubmed: 11959991
Cell. 2003 Mar 21;112(6):765-77
pubmed: 12654244
Biophys J. 2004 Nov;87(5):2968-75
pubmed: 15326026
Curr Biol. 2006 Feb 21;16(4):333-44
pubmed: 16488867
J Biol Chem. 1991 Oct 25;266(30):20567-73
pubmed: 1657929
Nucleic Acids Res. 2007;35(15):5223-31
pubmed: 17670794
BMC Biotechnol. 2007 Dec 21;7:94
pubmed: 18154674
Phys Rev Lett. 2007 Nov 23;99(21):217801
pubmed: 18233259
PLoS Comput Biol. 2008 Aug 22;4(8):e1000153
pubmed: 18725929
Nucleic Acids Res. 2009 Feb;37(3):721-30
pubmed: 19059997
Nucleic Acids Res. 2009 Jun;37(10):3125-33
pubmed: 19383879
Phys Biol. 2009 Jul 01;6(2):025012
pubmed: 19571370
Topol Appl. 2007 Apr 1;154(7):1381-1397
pubmed: 19924260
Proc Natl Acad Sci U S A. 2009 Dec 29;106(52):22269-74
pubmed: 20018693
J Mol Biol. 2010 Jul 30;400(5):963-82
pubmed: 20460130
Proc Natl Acad Sci U S A. 2011 Mar 1;108(9):3608-11
pubmed: 21321228
Phys Rev Lett. 2011 Oct 28;107(18):188302
pubmed: 22107680
Trends Genet. 2012 Mar;28(3):110-7
pubmed: 22236810
Nucleic Acids Res. 2012 Dec;40(22):11202-12
pubmed: 23074191
Nucleic Acids Res. 2014 Feb;42(3):1821-30
pubmed: 24185700
Cell. 2014 Dec 18;159(7):1665-80
pubmed: 25497547
Elife. 2015 May 07;4:null
pubmed: 25951515
Phys Biol. 2015 May 13;12(3):036001
pubmed: 25970016
Nucleic Acids Res. 2015 Sep 3;43(15):7229-36
pubmed: 26150424
Proc Natl Acad Sci U S A. 2015 Nov 24;112(47):E6456-65
pubmed: 26499245
Cell. 2016 Feb 25;164(5):847-57
pubmed: 26919425
Nucleic Acids Res. 2016 May 5;44(8):3503-12
pubmed: 27060145
Nat Rev Mol Cell Biol. 2016 Jul;17(7):399-412
pubmed: 27075410
Cell Rep. 2016 May 3;15(5):988-998
pubmed: 27117417
Elife. 2016 May 18;5:
pubmed: 27192037
Cell Rep. 2016 May 31;15(9):2038-49
pubmed: 27210764
Genome Biol. 2016 Aug 31;17(1):182
pubmed: 27582050
Mol Cell. 2016 Oct 6;64(1):134-147
pubmed: 27716481
EMBO J. 2016 Dec 15;35(24):2686-2698
pubmed: 27872142
Proc Natl Acad Sci U S A. 2017 Apr 11;114(15):E2991-E2997
pubmed: 28351979
Nature. 2017 Apr 27;544(7651):503-507
pubmed: 28424523
Elife. 2017 May 06;6:
pubmed: 28477406
Cell. 2017 Oct 5;171(2):305-320.e24
pubmed: 28985562
Nucleic Acids Res. 2018 Jan 25;46(2):650-660
pubmed: 29149297
Int J Mol Sci. 2017 Dec 18;18(12):null
pubmed: 29258269
Phys Rev Lett. 2017 Sep 29;119(13):138101
pubmed: 29341686
Science. 2018 Apr 6;360(6384):102-105
pubmed: 29472443
Eur Phys J E Soft Matter. 2018 Jun 7;41(6):72
pubmed: 29884956
Polymers (Basel). 2018 Oct 11;10(10):null
pubmed: 30961051
Cell. 1980 Aug;21(1):115-25
pubmed: 6250707
J Biol Chem. 1982 Mar 10;257(5):2687-93
pubmed: 6277910
J Biol Chem. 1983 Jul 10;258(13):8413-20
pubmed: 6305983
Cell. 1994 Dec 30;79(7):1233-43
pubmed: 8001157
Proc Natl Acad Sci U S A. 1993 Jun 1;90(11):5307-11
pubmed: 8506378
Biophys J. 1995 Oct;69(4):1596-605
pubmed: 8534830
Biophys J. 1996 Jun;70(6):2548-56
pubmed: 8744294
Science. 1997 Aug 1;277(5326):690-3
pubmed: 9235892