BOFdat: Generating biomass objective functions for genome-scale metabolic models from experimental data.


Journal

PLoS computational biology
ISSN: 1553-7358
Titre abrégé: PLoS Comput Biol
Pays: United States
ID NLM: 101238922

Informations de publication

Date de publication:
04 2019
Historique:
received: 29 11 2018
accepted: 21 03 2019
revised: 02 05 2019
pubmed: 23 4 2019
medline: 13 11 2019
entrez: 23 4 2019
Statut: epublish

Résumé

Genome-scale metabolic models (GEMs) are mathematically structured knowledge bases of metabolism that provide phenotypic predictions from genomic information. GEM-guided predictions of growth phenotypes rely on the accurate definition of a biomass objective function (BOF) that is designed to include key cellular biomass components such as the major macromolecules (DNA, RNA, proteins), lipids, coenzymes, inorganic ions and species-specific components. Despite its importance, no standardized computational platform is currently available to generate species-specific biomass objective functions in a data-driven, unbiased fashion. To fill this gap in the metabolic modeling software ecosystem, we implemented BOFdat, a Python package for the definition of a Biomass Objective Function from experimental data. BOFdat has a modular implementation that divides the BOF definition process into three independent modules defined here as steps: 1) the coefficients for major macromolecules are calculated, 2) coenzymes and inorganic ions are identified and their stoichiometric coefficients estimated, 3) the remaining species-specific metabolic biomass precursors are algorithmically extracted in an unbiased way from experimental data. We used BOFdat to reconstruct the BOF of the Escherichia coli model iML1515, a gold standard in the field. The BOF generated by BOFdat resulted in the most concordant biomass composition, growth rate, and gene essentiality prediction accuracy when compared to other methods. Installation instructions for BOFdat are available in the documentation and the source code is available on GitHub (https://github.com/jclachance/BOFdat).

Identifiants

pubmed: 31009451
doi: 10.1371/journal.pcbi.1006971
pii: PCOMPBIOL-D-18-01998
pmc: PMC6497307
doi:

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

e1006971

Déclaration de conflit d'intérêts

The authors have declared that no competing interests exist.

Références

Nat Biotechnol. 2016 Jan;34(1):104-10
pubmed: 26641532
Nat Protoc. 2010 Jan;5(1):93-121
pubmed: 20057383
Curr Opin Microbiol. 2010 Jun;13(3):344-9
pubmed: 20430689
Biochem J. 1970 Apr;117(3):551-62
pubmed: 4192611
Nucleic Acids Res. 2016 Jan 4;44(D1):D523-6
pubmed: 26527720
BMC Bioinformatics. 2007 Jun 20;8:212
pubmed: 17584497
Biotechnol Bioeng. 2003 Jun 20;82(6):670-7
pubmed: 12673766
Genome Biol. 2016 May 23;17(1):110
pubmed: 27215675
Nucleic Acids Res. 2017 Jan 4;45(D1):D543-D550
pubmed: 27899573
PLoS Comput Biol. 2009 Mar;5(3):e1000308
pubmed: 19282964
Nat Biotechnol. 2010 Mar;28(3):245-8
pubmed: 20212490
Mol Syst Biol. 2011 Mar 29;7:477
pubmed: 21451587
Bioinformatics. 2017 Nov 15;33(22):3603-3609
pubmed: 29036557
Nat Biotechnol. 2008 Oct;26(10):1155-60
pubmed: 18846089
Proc Natl Acad Sci U S A. 2006 Nov 14;103(46):17480-4
pubmed: 17088549
Genome Biol. 2016 May 23;17(1):109
pubmed: 27215445
BMC Bioinformatics. 2008 Jan 24;9:43
pubmed: 18218092
Metabolomics. 2015;11(6):1690-1701
pubmed: 26491422
mBio. 2016 Jan 05;7(1):e01840-15
pubmed: 26733068
J Mol Biol. 1977 Oct 15;116(1):125-59
pubmed: 338917
Microbiol Mol Biol Rev. 1998 Mar;62(1):181-203
pubmed: 9529891
Biotechnol Bioeng. 2010 Oct 15;107(3):403-12
pubmed: 20589842
Nature. 2018 May;557(7706):503-509
pubmed: 29769716
Nucleic Acids Res. 2016 Jan 4;44(D1):D515-22
pubmed: 26476456
Methods Mol Biol. 2013;985:17-45
pubmed: 23417797
Bioinformatics. 2009 Dec 15;25(24):3282-8
pubmed: 19808881
PLoS One. 2017 Jun 2;12(6):e0177678
pubmed: 28574989
Cell. 2015 May 21;161(5):971-987
pubmed: 26000478
Science. 2010 Nov 19;330(6007):1099-102
pubmed: 21097934
Nat Biotechnol. 2014 May;32(5):447-52
pubmed: 24811519
J Theor Biol. 1993 Dec 21;165(4):477-502
pubmed: 21322280
Bioinformatics. 2005 Apr 15;21(8):1603-9
pubmed: 15613400
Nat Biotechnol. 2017 Oct 11;35(10):904-908
pubmed: 29020004
PLoS One. 2011;6(7):e23126
pubmed: 21829590
Cell. 2016 Jun 2;165(6):1493-1506
pubmed: 27238023
Metab Eng. 2017 Jan;39:200-208
pubmed: 27939572
BMC Syst Biol. 2013 Aug 08;7:74
pubmed: 23927696

Auteurs

Jean-Christophe Lachance (JC)

Département de Biologie, Université de Sherbrooke, Sherbrooke, Québec, Canada.

Colton J Lloyd (CJ)

Department of Bioengineering, University of California, San Diego, La Jolla, CA, United States of America.

Jonathan M Monk (JM)

Department of Bioengineering, University of California, San Diego, La Jolla, CA, United States of America.

Laurence Yang (L)

Department of Bioengineering, University of California, San Diego, La Jolla, CA, United States of America.

Anand V Sastry (AV)

Department of Bioengineering, University of California, San Diego, La Jolla, CA, United States of America.

Yara Seif (Y)

Department of Bioengineering, University of California, San Diego, La Jolla, CA, United States of America.

Bernhard O Palsson (BO)

Department of Bioengineering, University of California, San Diego, La Jolla, CA, United States of America.
Bioinformatics and Systems Biology Program, University of California, San Diego, La Jolla, CA, United States of America.
Department of Pediatrics, University of California, San Diego, La Jolla, CA, United States of America.
Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, Lyngby, Denmark.

Sébastien Rodrigue (S)

Département de Biologie, Université de Sherbrooke, Sherbrooke, Québec, Canada.

Adam M Feist (AM)

Department of Bioengineering, University of California, San Diego, La Jolla, CA, United States of America.
Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, Lyngby, Denmark.

Zachary A King (ZA)

Department of Bioengineering, University of California, San Diego, La Jolla, CA, United States of America.

Pierre-Étienne Jacques (PÉ)

Département de Biologie, Université de Sherbrooke, Sherbrooke, Québec, Canada.

Articles similaires

Selecting optimal software code descriptors-The case of Java.

Yegor Bugayenko, Zamira Kholmatova, Artem Kruglov et al.
1.00
Software Algorithms Programming Languages

Exploring blood-brain barrier passage using atomic weighted vector and machine learning.

Yoan Martínez-López, Paulina Phoobane, Yanaima Jauriga et al.
1.00
Blood-Brain Barrier Machine Learning Humans Support Vector Machine Software
Coal Metagenome Phylogeny Bacteria Genome, Bacterial

High-throughput Bronchus-on-a-Chip system for modeling the human bronchus.

Akina Mori, Marjolein Vermeer, Lenie J van den Broek et al.
1.00
Humans Bronchi Lab-On-A-Chip Devices Epithelial Cells Goblet Cells

Classifications MeSH