Metabolome and Transcriptome Association Analysis Reveals Dynamic Regulation of Purine Metabolism and Flavonoid Synthesis in Transdifferentiation during Somatic Embryogenesis in Cotton.
cotton
flavonoid biosynthesis
molecular and biochemical basis
purine metabolism
somatic embryogenesis
transcript-metabolite network
transdifferentiation
widely targeted metabolomics
Journal
International journal of molecular sciences
ISSN: 1422-0067
Titre abrégé: Int J Mol Sci
Pays: Switzerland
ID NLM: 101092791
Informations de publication
Date de publication:
26 Apr 2019
26 Apr 2019
Historique:
received:
13
03
2019
revised:
21
04
2019
accepted:
24
04
2019
entrez:
28
4
2019
pubmed:
28
4
2019
medline:
20
8
2019
Statut:
epublish
Résumé
Plant regeneration via somatic embryogenesis (SE) is a key step during genetic engineering. In the current study, integrated widely targeted metabolomics and RNA sequencing were performed to investigate the dynamic metabolic and transcriptional profiling of cotton SE. Our data revealed that a total of 581 metabolites were present in nonembryogenic staged calli (NEC), primary embryogenic calli (PEC), and initiation staged globular embryos (GE). Of the differentially accumulated metabolites (DAMs), nucleotides, and lipids were specifically accumulated during embryogenic differentiation, whereas flavones and hydroxycinnamoyl derivatives were accumulated during somatic embryo development. Additionally, metabolites related to purine metabolism were significantly enriched in PEC vs. NEC, whereas in GE vs. PEC, DAMs were remarkably associated with flavonoid biosynthesis. An association analysis of the metabolome and transcriptome data indicated that purine metabolism and flavonoid biosynthesis were co-mapped based on the Kyoto encyclopedia of genes and genomes (KEGG) database. Moreover, purine metabolism-related genes associated with signal recognition, transcription, stress, and lipid binding were significantly upregulated. Moreover, several classic somatic embryogenesis (SE) genes were highly correlated with their corresponding metabolites that were involved in purine metabolism and flavonoid biosynthesis. The current study identified a series of potential metabolites and corresponding genes responsible for SE transdifferentiation, which provides a valuable foundation for a deeper understanding of the regulatory mechanisms underlying cell totipotency at the molecular and biochemical levels.
Identifiants
pubmed: 31027387
pii: ijms20092070
doi: 10.3390/ijms20092070
pmc: PMC6539419
pii:
doi:
Substances chimiques
Flavonoids
0
Purines
0
Types de publication
Journal Article
Langues
eng
Subventions
Organisme : the National Natural Science Foundation of China
ID : 31401428
Organisme : Fok Ying-Tong Foundation
ID : 151024
Organisme : Taishan Scholar Talent Project from PRC
ID : TSQN20161018
Références
Development. 1999 Apr;126(8):1563-70
pubmed: 10079219
Plant Cell Physiol. 1999 Jun;40(6):651-5
pubmed: 10483126
Nucleic Acids Res. 2000 Jan 1;28(1):27-30
pubmed: 10592173
Nat Biotechnol. 2000 Nov;18(11):1157-61
pubmed: 11062433
Plant Mol Biol. 2002 Jan;48(1-2):155-71
pubmed: 11860207
Bioinformatics. 2002;18 Suppl 2:S241-8
pubmed: 12386008
Phytochemistry. 2003 Mar;62(6):815-6
pubmed: 12590109
Phytochemistry. 2003 Mar;62(6):817-36
pubmed: 12590110
Annu Rev Plant Biol. 2003;54:669-89
pubmed: 14503007
Planta. 2005 Sep;222(1):107-17
pubmed: 15968510
Science. 2005 Jul 1;309(5731):86
pubmed: 15994532
Plant Mol Biol. 2006 Jul;61(4-5):615-27
pubmed: 16897479
Genomics. 2007 Nov;90(5):620-8
pubmed: 17884330
Plant Physiol Biochem. 2009 May;47(5):343-50
pubmed: 19195904
Planta. 2009 Sep;230(4):827-40
pubmed: 19639337
Mol Biol Rep. 2010 Jun;37(5):2493-507
pubmed: 19705297
Analyst. 2009 Oct;134(10):2003-11
pubmed: 19768207
Plant Signal Behav. 2009 Jul;4(7):574-6
pubmed: 19820347
Plant Biotechnol J. 2009 Dec;7(9):952-63
pubmed: 19906246
Anal Chem. 2010 May 15;82(10):4165-73
pubmed: 20405949
BMC Plant Biol. 2010 May 05;10:82
pubmed: 20444255
J Exp Bot. 2010 Sep;61(14):4069-85
pubmed: 20729480
Plant Biotechnol J. 2011 Dec;9(9):1038-48
pubmed: 21554528
Cell Res. 2012 Jan;22(1):168-77
pubmed: 22064701
Tree Physiol. 2012 Feb;32(2):232-44
pubmed: 22310018
Gene. 2012 May 25;500(1):115-23
pubmed: 22465534
BMC Plant Biol. 2012 Jul 20;12:110
pubmed: 22817809
Plant Physiol. 2012 Oct;160(2):684-95
pubmed: 22858635
J Exp Bot. 2013 Apr;64(6):1521-36
pubmed: 23382553
Plant Physiol. 2013 Apr;161(4):2113-27
pubmed: 23457229
Mol Plant. 2013 Nov;6(6):1769-80
pubmed: 23702596
J Integr Plant Biol. 2013 Jul;55(7):631-42
pubmed: 23710882
Plant Cell. 2013 Sep;25(9):3159-73
pubmed: 24076977
Plant Biotechnol J. 2014 Feb;12(2):161-73
pubmed: 24112122
J Plant Physiol. 2014 May 1;171(8):619-24
pubmed: 24709154
Anal Bioanal Chem. 2014 Sep;406(24):5997-6005
pubmed: 25012359
BMC Plant Biol. 2014 Jul 16;14:185
pubmed: 25030026
Biochim Biophys Acta. 2015 Apr;1849(4):385-402
pubmed: 25038583
Protoplasma. 2015 Mar;252(2):559-70
pubmed: 25252886
BMC Plant Biol. 2015 May 16;15:121
pubmed: 25976599
J Proteome Res. 2015 Aug 7;14(8):3322-35
pubmed: 26088811
Planta. 2016 Feb;243(2):473-88
pubmed: 26476718
Plant Physiol. 2015 Dec;169(4):2805-21
pubmed: 26491146
Front Plant Sci. 2015 Nov 05;6:956
pubmed: 26594219
Gene. 2016 Mar 1;578(1):17-24
pubmed: 26657036
Tree Physiol. 2016 Mar;36(3):392-402
pubmed: 26786537
Sci Rep. 2016 Feb 23;6:21652
pubmed: 26902837
J Exp Bot. 2016 Apr;67(8):2231-46
pubmed: 26962208
Nat Plants. 2015 Jun 29;1:15089
pubmed: 27250255
Plant Mol Biol. 2016 Oct;92(3):279-92
pubmed: 27511192
BMC Plant Biol. 2016 Dec 7;16(1):259
pubmed: 27923345
Plant Sci. 2017 May;258:61-76
pubmed: 28330564
J Exp Bot. 2018 Feb 23;69(5):1081-1093
pubmed: 29253187
Plant Biotechnol J. 2019 Mar 7;:null
pubmed: 30844118
Cell. 1996 Aug 9;86(3):423-33
pubmed: 8756724