Human Double-Negative Regulatory T-Cells Induce a Metabolic and Functional Switch in Effector T-Cells by Suppressing mTOR Activity.


Journal

Frontiers in immunology
ISSN: 1664-3224
Titre abrégé: Front Immunol
Pays: Switzerland
ID NLM: 101560960

Informations de publication

Date de publication:
2019
Historique:
received: 11 01 2019
accepted: 05 04 2019
entrez: 21 5 2019
pubmed: 21 5 2019
medline: 2 10 2020
Statut: epublish

Résumé

The recently discovered population of TCRαβ+ CD4-/CD8- (double-negative, DN) T-cells are highly potent suppressor cells in mice and humans. In preclinical transplantation models, adoptive transfer of DN T-cells specifically inhibits alloreactive T-cells and prevents transplant rejection or graft-vs.-host disease (GvHD). Interestingly, clinical studies in patients who underwent allogeneic stem cell transplantation reveal an inverse correlation between the frequency of circulating DN T-cells and the severity of GvHD, suggesting a therapeutic potential of human DN T-cells. However, their exact mode of action has not been elucidated yet. Investigating the impact of DN T-cells on conventional T-cells, we found that human DN T-cells selectively inhibit mTOR signaling in CD4 T-cells. Given that mTOR is a critical regulator of cellular metabolism, we further determined the impact of DN T-cells on the metabolic framework of T-cells. Intriguingly, DN T-cells diminished expression of glucose transporters and glucose uptake, whereas fatty acid uptake was not modified, indicating that DN T-cells prevent metabolic adaptation of CD4 T-cells upon activation (i.e., glycolytic switch) thereby contributing to their suppression. Further analyses demonstrated that CD4 T-cells also do not upregulate homing receptors associated with inflammatory processes. In contrast, expression of central memory-cell associated cell surface markers and transcription factors were increased by DN T-cells. Moreover, CD4 T-cells failed to produce inflammatory cytokines after co-culture with DN T-cells, whereas IL-2 secretion was enhanced. Taken together DN T-cells impair metabolic reprogramming of conventional CD4 T-cells by abrogating mTOR signaling, thereby modulating CD4 T-cell functionality. These results uncover a new mechanism of DN T-cell-mediated suppression, pointing out that DN T-cells could serve as cell-based therapy to limit alloreactive immune response.

Identifiants

pubmed: 31105702
doi: 10.3389/fimmu.2019.00883
pmc: PMC6498403
doi:

Substances chimiques

CD4 Antigens 0
CD8 Antigens 0
Receptors, Antigen, T-Cell, alpha-beta 0
MTOR protein, human EC 2.7.1.1
TOR Serine-Threonine Kinases EC 2.7.11.1

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

883

Références

Nat Med. 2000 Jul;6(7):782-9
pubmed: 10888927
Curr Top Microbiol Immunol. 2000;251:167-71
pubmed: 11036772
Nat Immunol. 2000 Nov;1(5):433-40
pubmed: 11062504
Transplant Proc. 2001 Feb-Mar;33(1-2):84-5
pubmed: 11266715
Nature. 2001 May 17;411(6835):385-9
pubmed: 11357147
J Exp Med. 2002 Jul 15;196(2):261-7
pubmed: 12119351
J Immunol. 2003 Feb 15;170(4):1846-53
pubmed: 12574350
J Immunol. 2003 Feb 15;170(4):2161-9
pubmed: 12574389
Immunology. 2003 Jul;109(3):440-9
pubmed: 12807491
J Immunol. 2003 Jul 1;171(1):134-41
pubmed: 12816991
Exp Hematol. 2003 Oct;31(10):897-902
pubmed: 14550805
Blood. 2005 Apr 1;105(7):2828-35
pubmed: 15572590
Mol Cell Biol. 2005 Nov;25(21):9543-53
pubmed: 16227604
Cell Mol Immunol. 2004 Oct;1(5):328-35
pubmed: 16285891
J Immunol. 2006 May 1;176(9):5276-83
pubmed: 16621993
J Immunol. 2006 Nov 15;177(10):6920-9
pubmed: 17082607
Br J Haematol. 2008 Apr;141(2):170-8
pubmed: 18318770
Cell. 2009 Feb 6;136(3):521-34
pubmed: 19203585
Blood. 2009 May 14;113(20):5002-9
pubmed: 19258593
Lancet. 2009 May 2;373(9674):1550-61
pubmed: 19282026
Biol Blood Marrow Transplant. 2010 Mar;16(3):311-9
pubmed: 20025985
Immunity. 2010 Jan 29;32(1):67-78
pubmed: 20060330
Eur J Immunol. 2011 Mar;41(3):739-48
pubmed: 21287552
Blood. 2011 Apr 7;117(14):3921-8
pubmed: 21292771
J Immunol. 2011 May 15;186(10):5556-68
pubmed: 21471443
PLoS One. 2011;6(5):e20107
pubmed: 21611151
Eur J Immunol. 2011 Sep;41(9):2699-708
pubmed: 21660936
Cell. 2011 Sep 2;146(5):772-84
pubmed: 21871655
Blood. 2012 Sep 6;120(10):2021-31
pubmed: 22723548
Sci Signal. 2012 Jun 26;5(230):ra46
pubmed: 22740686
Immunol Rev. 2012 Sep;249(1):104-15
pubmed: 22889218
Br J Haematol. 2013 Feb;160(3):288-302
pubmed: 23205489
Sci Transl Med. 2013 Apr 3;5(179):179ra43
pubmed: 23552371
Cell. 2013 Jun 6;153(6):1239-51
pubmed: 23746840
Ther Adv Hematol. 2013 Dec;4(6):366-78
pubmed: 24319572
Blood. 2014 Apr 24;123(17):2663-72
pubmed: 24553174
Cytokine. 2014 Sep;69(1):120-4
pubmed: 24968286
J Immunol. 2014 Oct 1;193(7):3503-12
pubmed: 25165153
J Leukoc Biol. 2015 Apr;97(4):807-19
pubmed: 25663681
Anal Quant Cytopathol Histpathol. 2014 Oct;36(5):258-62
pubmed: 25803997
Nat Commun. 2015 Mar 26;6:6692
pubmed: 25809635
J Immunol. 2015 Oct 1;195(7):3139-48
pubmed: 26324773
Blood. 2016 Feb 25;127(8):1044-51
pubmed: 26563133
Br J Clin Pharmacol. 2016 Nov;82(5):1158-1170
pubmed: 26810941
J Clin Invest. 2016 Apr 1;126(4):1337-52
pubmed: 26950421
Blood. 2016 Jul 14;128(2):227-38
pubmed: 27099149
Biol Blood Marrow Transplant. 2017 Jan;23(1):172-175
pubmed: 27777142
Blood. 2017 Feb 16;129(7):906-916
pubmed: 28057639
J Clin Invest. 2018 Mar 1;128(3):916-930
pubmed: 29376889
Blood. 2018 Jun 14;131(24):2651-2660
pubmed: 29728401
Oncoimmunology. 2018 Mar 26;7(7):e1445454
pubmed: 29900057
Clin Exp Immunol. 2018 Sep;193(3):386-399
pubmed: 30066399
Biol Blood Marrow Transplant. 2019 Jan;25(1):19-25
pubmed: 30244108
J Immunol. 1993 Jul 15;151(2):717-29
pubmed: 7687621

Auteurs

Tabea Haug (T)

Department of Internal Medicine 5, Hematology and Oncology, University Hospital Erlangen, University of Erlangen-Nuremberg, Erlangen, Germany.

Michael Aigner (M)

Department of Internal Medicine 5, Hematology and Oncology, University Hospital Erlangen, University of Erlangen-Nuremberg, Erlangen, Germany.

Moritz M Peuser (MM)

Department of Internal Medicine 5, Hematology and Oncology, University Hospital Erlangen, University of Erlangen-Nuremberg, Erlangen, Germany.

Carolin D Strobl (CD)

Department of Internal Medicine 5, Hematology and Oncology, University Hospital Erlangen, University of Erlangen-Nuremberg, Erlangen, Germany.

Kai Hildner (K)

Department of Internal Medicine 1, University Hospital Erlangen, University of Erlangen-Nuremberg, Erlangen, Germany.

Dimitrios Mougiakakos (D)

Department of Internal Medicine 5, Hematology and Oncology, University Hospital Erlangen, University of Erlangen-Nuremberg, Erlangen, Germany.

Heiko Bruns (H)

Department of Internal Medicine 5, Hematology and Oncology, University Hospital Erlangen, University of Erlangen-Nuremberg, Erlangen, Germany.

Andreas Mackensen (A)

Department of Internal Medicine 5, Hematology and Oncology, University Hospital Erlangen, University of Erlangen-Nuremberg, Erlangen, Germany.

Simon Völkl (S)

Department of Internal Medicine 5, Hematology and Oncology, University Hospital Erlangen, University of Erlangen-Nuremberg, Erlangen, Germany.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH