Lessons Learned from Large-Scale, First-Tier Clinical Exome Sequencing in a Highly Consanguineous Population.
autozygome
candidate genes
clinical genomics
dual diagnosis
exome
expanded carrier screening
fetal malformation
first-tier
genomics-first
gonadal mosaicism
hybrid phenotype
knockout
multilocus phenotypes
phenotypic expansion
prenatal
Journal
American journal of human genetics
ISSN: 1537-6605
Titre abrégé: Am J Hum Genet
Pays: United States
ID NLM: 0370475
Informations de publication
Date de publication:
06 06 2019
06 06 2019
Historique:
received:
19
12
2018
accepted:
11
04
2019
pubmed:
28
5
2019
medline:
12
3
2020
entrez:
28
5
2019
Statut:
ppublish
Résumé
We report the results of clinical exome sequencing (CES) on >2,200 previously unpublished Saudi families as a first-tier test. The predominance of autosomal-recessive causes allowed us to make several key observations. We highlight 155 genes that we propose to be recessive, disease-related candidates. We report additional mutational events in 64 previously reported candidates (40 recessive), and these events support their candidacy. We report recessive forms of genes that were previously associated only with dominant disorders and that have phenotypes ranging from consistent with to conspicuously distinct from the known dominant phenotypes. We also report homozygous loss-of-function events that can inform the genetics of complex diseases. We were also able to deduce the likely causal variant in most couples who presented after the loss of one or more children, but we lack samples from those children. Although a similar pattern of mostly recessive causes was observed in the prenatal setting, the higher proportion of loss-of-function events in these cases was notable. The allelic series presented by the wealth of recessive variants greatly expanded the phenotypic expression of the respective genes. We also make important observations about dominant disorders; these observations include the pattern of de novo variants, the identification of 74 candidate dominant, disease-related genes, and the potential confirmation of 21 previously reported candidates. Finally, we describe the influence of a predominantly autosomal-recessive landscape on the clinical utility of rapid sequencing (Flash Exome). Our cohort's genotypic and phenotypic data represent a unique resource that can contribute to improved variant interpretation through data sharing.
Identifiants
pubmed: 31130284
pii: S0002-9297(19)30159-4
doi: 10.1016/j.ajhg.2019.04.011
pmc: PMC6562004
pii:
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
1182-1201Commentaires et corrections
Type : ErratumIn
Informations de copyright
Copyright © 2019 American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.
Références
Mol Biol Cell. 2005 May;16(5):2443-57
pubmed: 15758024
Nat Genet. 2009 Jan;41(1):25-34
pubmed: 19079261
Mol Biol Cell. 2009 Dec;20(24):5074-85
pubmed: 19828736
Nat Neurosci. 2009 Dec;12(12):1506-13
pubmed: 19935654
Genet Med. 2010 Dec;12(12):765-71
pubmed: 21189493
Cell. 2011 Jul 8;146(1):9-11
pubmed: 21729776
Am J Hum Genet. 2011 Aug 12;89(2):313-9
pubmed: 21835307
Genet Med. 2011 Nov;13(11):978-81
pubmed: 21836522
J Med Genet. 2012 Oct;49(10):630-5
pubmed: 23054245
Curr Protoc Hum Genet. 2012 Oct;Chapter 6:Unit6.12
pubmed: 23074070
J Clin Invest. 2012 Dec;122(12):4732-6
pubmed: 23160192
Clin Genet. 2013 Sep;84(3):203-8
pubmed: 23451714
Clin Genet. 2014 Mar;85(3):278-81
pubmed: 23551117
Hum Genet. 2013 Nov;132(11):1197-211
pubmed: 23907654
Hum Mutat. 2014 Jan;35(1):36-40
pubmed: 24285566
PLoS Genet. 2013;9(12):e1004030
pubmed: 24367280
J Cell Sci. 2014 Oct 1;127(Pt 19):4128-33
pubmed: 25074808
Gut. 2014 Nov;63(11):1831-2
pubmed: 25147203
Mol Genet Genomic Med. 2014 Sep;2(5):369-78
pubmed: 25333061
Trends Genet. 2015 Feb;31(2):108-15
pubmed: 25497971
Cell Rep. 2015 Jan 13;10(2):148-61
pubmed: 25558065
J Med Genet. 2015 May;52(5):322-9
pubmed: 25713110
Genet Med. 2015 May;17(5):405-24
pubmed: 25741868
J Child Neurol. 2016 Feb;31(2):211-4
pubmed: 26060304
Genome Biol. 2015 Jun 26;16:134
pubmed: 26112015
J Neurosci. 2015 Jul 22;35(29):10510-22
pubmed: 26203146
Genet Med. 2016 Jun;18(6):554-62
pubmed: 26355662
Genet Med. 2016 Jul;18(7):686-95
pubmed: 26633546
Am J Hum Genet. 2016 Apr 7;98(4):643-52
pubmed: 27018474
Hum Genet. 2016 May;135(5):525-540
pubmed: 27023906
Genet Med. 2016 Dec;18(12):1244-1249
pubmed: 27124789
Am J Med Genet A. 2016 Aug;170(8):2219-21
pubmed: 27242277
Nat Genet. 2016 Sep;48(9):1071-6
pubmed: 27428751
Mol Psychiatry. 2017 Apr;22(4):615-624
pubmed: 27431290
Nat Commun. 2016 Aug 26;7:12567
pubmed: 27562453
Genet Med. 2017 Feb;19(2):249-255
pubmed: 27854360
Genome Biol. 2016 Nov 28;17(1):242
pubmed: 27894351
Nature. 2017 Feb 23;542(7642):433-438
pubmed: 28135719
Mol Psychiatry. 2018 Mar;23(3):713-722
pubmed: 28373692
Genet Med. 2017 Oct;19(10):1144-1150
pubmed: 28383543
Am J Hum Genet. 2017 May 4;100(5):695-705
pubmed: 28475856
Hum Genet. 2017 Aug;136(8):921-939
pubmed: 28600779
Am J Hum Genet. 2017 Jul 6;101(1):23-36
pubmed: 28625504
Genet Med. 2018 Jan;20(1):64-68
pubmed: 28640246
Genet Med. 2018 Apr;20(4):420-427
pubmed: 28749478
Hum Genet. 2017 Nov;136(11-12):1419-1429
pubmed: 28940097
Genet Med. 2018 Dec;20(12):1609-1616
pubmed: 29620724
Sci Rep. 2018 May 15;8(1):7605
pubmed: 29765103
Science. 2018 Dec 7;362(6419):1161-1164
pubmed: 30409806
Am J Hum Genet. 2019 Jun 6;104(6):1202-1209
pubmed: 31079898