Unusual Placement of an EBV Epitope into the Groove of the Ankylosing Spondylitis-Associated HLA-B27 Allele Allows CD8+ T Cell Activation.
Alleles
Amino Acid Sequence
CD8-Positive T-Lymphocytes
/ cytology
Epitopes
/ chemistry
HLA-B27 Antigen
/ genetics
Herpesvirus 4, Human
/ metabolism
Humans
Interferon-gamma
/ metabolism
Leukocytes, Mononuclear
/ cytology
Lymphocyte Activation
Plasmids
/ genetics
Receptors, Antigen, T-Cell
/ metabolism
Spondylitis, Ankylosing
/ diagnosis
HLA-B27
ankylosing spondylitis
computational analysis
viral peptides
Journal
Cells
ISSN: 2073-4409
Titre abrégé: Cells
Pays: Switzerland
ID NLM: 101600052
Informations de publication
Date de publication:
11 06 2019
11 06 2019
Historique:
received:
02
04
2019
revised:
06
06
2019
accepted:
08
06
2019
entrez:
20
6
2019
pubmed:
20
6
2019
medline:
20
6
2019
Statut:
epublish
Résumé
The human leukocyte antigen HLA-B27 is a strong risk factor for Ankylosing Spondylitis (AS), an immune-mediated disorder affecting axial skeleton and sacroiliac joints. Additionally, evidence exists sustaining a strong protective role for HLA-B27 in viral infections. These two aspects could stem from common molecular mechanisms. Recently, we have found that the HLA-B*2705 presents an EBV epitope (pEBNA3A-RPPIFIRRL), lacking the canonical B27 binding motif but known as immunodominant in the HLA-B7 context of presentation. Notably, 69% of B*2705 carriers, mostly patients with AS, possess B*2705-restricted, pEBNA3A-specific CD8+ T cells. Contrarily, the non-AS-associated B*2709 allele, distinguished from the B*2705 by the single His116Asp polymorphism, is unable to display this peptide and, accordingly, B*2709 healthy subjects do not unleash specific T cell responses. Herein, we investigated whether the reactivity towards pEBNA3A could be a side effect of the recognition of the natural longer peptide (pKEBNA3A) having the classical B27 consensus (KRPPIFIRRL). The stimulation of PBMC from B*2705 positive patients with AS in parallel with both pEBNA3A and pKEBNA3A did not allow to reach an unambiguous conclusion since the differences in the magnitude of the response measured as percentage of IFNγ-producing CD8+ T cells were not statistically significant. Interestingly, computational analysis suggested a structural shift of pEBNA3A as well as of pKEBNA3A into the B27 grooves, leaving the A pocket partially unfilled. To our knowledge this is the first report of a viral peptide: HLA-B27 complex recognized by TCRs in spite of a partially empty groove. This implies a rethinking of the actual B27 immunopeptidome crucial for viral immune-surveillance and autoimmunity.
Identifiants
pubmed: 31212633
pii: cells8060572
doi: 10.3390/cells8060572
pmc: PMC6627668
pii:
doi:
Substances chimiques
Epitopes
0
HLA-B*27:05 antigen
0
HLA-B*27:09 antigen
0
HLA-B27 Antigen
0
Receptors, Antigen, T-Cell
0
Interferon-gamma
82115-62-6
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Références
Clin Exp Immunol. 2017 Dec;190(3):281-290
pubmed: 28759104
Tissue Antigens. 2011 Sep;78(3):161-70
pubmed: 21736566
Nat Genet. 2011 Jul 10;43(8):761-7
pubmed: 21743469
Curr Opin Rheumatol. 2013 Jul;25(4):411-8
pubmed: 23673483
Arthritis Rheum. 2005 Oct;52(10):3319-21
pubmed: 16200572
Nature. 2010 May 20;465(7296):350-4
pubmed: 20445539
Mol Med. 2016 Sep;22:215-223
pubmed: 27254288
Eur J Immunol. 1995 Nov;25(11):3199-201
pubmed: 7489765
J Biol Chem. 2013 Apr 12;288(15):10882-9
pubmed: 23430249
J Mol Biol. 2008 Feb 22;376(3):798-810
pubmed: 18178223
Mol Immunol. 2014 Jan;57(1):22-7
pubmed: 23916069
Sci Rep. 2018 Jul 10;8(1):10398
pubmed: 29991817
Immunol Rev. 2012 Nov;250(1):61-81
pubmed: 23046123
Nat Rev Immunol. 2011 Nov 11;11(12):823-36
pubmed: 22076556
J Exp Med. 2004 Jan 19;199(2):271-81
pubmed: 14734527
Eur J Immunol. 1997 Feb;27(2):368-73
pubmed: 9045906
Arthritis Rheumatol. 2014 Feb;66(2):284-94
pubmed: 24504800
Tissue Antigens. 2008 Jun;71(6):495-506
pubmed: 18489433
Curr Rheumatol Rep. 2017 Feb;19(2):9
pubmed: 28247302
Nat Genet. 2007 Nov;39(11):1329-37
pubmed: 17952073
Arthritis Rheum. 2010 Apr;62(4):978-87
pubmed: 20131248
Adv Exp Med Biol. 2009;649:255-62
pubmed: 19731635
Arthritis Rheumatol. 2016 Feb;68(2):505-15
pubmed: 26360328
Sci Rep. 2017 Jul 11;7(1):5072
pubmed: 28698575
Proteins. 1993 Dec;17(4):412-25
pubmed: 8108382
Front Immunol. 2019 Jan 25;10:35
pubmed: 30740100
J Immunol. 2000 Jun 15;164(12):6398-405
pubmed: 10843695
FEBS J. 2011 May;278(10):1713-27
pubmed: 21414141
Ann Rheum Dis. 2015 Aug;74(8):1627-9
pubmed: 25917849
Nature. 1991 Sep 26;353(6342):321-5
pubmed: 1922337
Proc Natl Acad Sci U S A. 1994 Feb 15;91(4):1534-8
pubmed: 8108441
Tissue Antigens. 2014 Aug;84(2):177-86
pubmed: 25066018
Hum Immunol. 2019 May;80(5):290-295
pubmed: 30682405
J Mol Biol. 2012 Jan 13;415(2):429-42
pubmed: 22119720
Nucleic Acids Res. 2012 Jul;40(Web Server issue):W294-7
pubmed: 22649060
Mol Immunol. 2014 Jan;57(1):44-51
pubmed: 23993278
Biol Chem. 2017 Aug 28;398(9):1027-1036
pubmed: 28141543
Adv Exp Med Biol. 2009;649:196-209
pubmed: 19731630
Front Immunol. 2018 Oct 30;9:2463
pubmed: 30425713
Curr Opin Rheumatol. 2013 Jul;25(4):426-33
pubmed: 23656712
Proteomics. 2018 May;18(9):e1700249
pubmed: 29393594
Nat Rev Rheumatol. 2016 Feb;12(2):81-91
pubmed: 26439405
Eur J Immunol. 1995 Jan;25(1):18-24
pubmed: 7531143
Nat Rev Rheumatol. 2017 Jun;13(6):359-367
pubmed: 28446810
Immunogenetics. 2015 Aug;67(8):425-36
pubmed: 26040913
BMC Struct Biol. 2006 Mar 20;6:5
pubmed: 16549002