Standardized next-generation sequencing of immunoglobulin and T-cell receptor gene recombinations for MRD marker identification in acute lymphoblastic leukaemia; a EuroClonality-NGS validation study.
Computational Biology
/ methods
Gene Rearrangement, T-Lymphocyte
/ genetics
Genes, Immunoglobulin
/ genetics
Genes, T-Cell Receptor
/ genetics
Genetic Markers
/ genetics
High-Throughput Nucleotide Sequencing
/ methods
Humans
Immunoglobulins
/ genetics
Neoplasm, Residual
/ genetics
Precursor Cell Lymphoblastic Leukemia-Lymphoma
/ genetics
Receptors, Antigen, T-Cell
/ genetics
Recombination, Genetic
/ genetics
Reference Standards
Reproducibility of Results
Journal
Leukemia
ISSN: 1476-5551
Titre abrégé: Leukemia
Pays: England
ID NLM: 8704895
Informations de publication
Date de publication:
09 2019
09 2019
Historique:
received:
15
01
2019
accepted:
20
02
2019
pubmed:
28
6
2019
medline:
6
2
2020
entrez:
28
6
2019
Statut:
ppublish
Résumé
Amplicon-based next-generation sequencing (NGS) of immunoglobulin (IG) and T-cell receptor (TR) gene rearrangements for clonality assessment, marker identification and quantification of minimal residual disease (MRD) in lymphoid neoplasms has been the focus of intense research, development and application. However, standardization and validation in a scientifically controlled multicentre setting is still lacking. Therefore, IG/TR assay development and design, including bioinformatics, was performed within the EuroClonality-NGS working group and validated for MRD marker identification in acute lymphoblastic leukaemia (ALL). Five EuroMRD ALL reference laboratories performed IG/TR NGS in 50 diagnostic ALL samples, and compared results with those generated through routine IG/TR Sanger sequencing. A central polytarget quality control (cPT-QC) was used to monitor primer performance, and a central in-tube quality control (cIT-QC) was spiked into each sample as a library-specific quality control and calibrator. NGS identified 259 (average 5.2/sample, range 0-14) clonal sequences vs. Sanger-sequencing 248 (average 5.0/sample, range 0-14). NGS primers covered possible IG/TR rearrangement types more completely compared with local multiplex PCR sets and enabled sequencing of bi-allelic rearrangements and weak PCR products. The cPT-QC showed high reproducibility across all laboratories. These validated and reproducible quality-controlled EuroClonality-NGS assays can be used for standardized NGS-based identification of IG/TR markers in lymphoid malignancies.
Identifiants
pubmed: 31243313
doi: 10.1038/s41375-019-0496-7
pii: 10.1038/s41375-019-0496-7
pmc: PMC6756028
doi:
Substances chimiques
Genetic Markers
0
Immunoglobulins
0
Receptors, Antigen, T-Cell
0
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
2241-2253Subventions
Organisme : Wellcome Trust
Pays : United Kingdom
Références
Blood. 2002 Apr 1;99(7):2315-23
pubmed: 11895762
Leukemia. 2013 Aug;27(8):1659-65
pubmed: 23419792
Leukemia. 2012 Oct;26(10):2159-71
pubmed: 22918122
PLoS One. 2016 Nov 11;11(11):e0166126
pubmed: 27835690
Genome Res. 2009 Oct;19(10):1817-24
pubmed: 19541912
Leukemia. 2003 Aug;17(8):1573-82
pubmed: 12886245
Blood. 1993 Jul 15;82(2):581-9
pubmed: 8329713
Bioinformatics. 2017 Feb 1;33(3):435-437
pubmed: 28172348
Cold Spring Harb Protoc. 2011 Jun 01;2011(6):695-715
pubmed: 21632778
Bone Marrow Transplant. 2017 Jul;52(7):962-968
pubmed: 28244980
Mol Diagn Ther. 2017 Oct;21(5):481-492
pubmed: 28452038
Sci Transl Med. 2010 Sep 1;2(47):47ra64
pubmed: 20811043
Adv Immunol. 2007;95:1-50
pubmed: 17869609
Nat Immunol. 2010 Jan;11(1):14-20
pubmed: 20016505
J Immunol. 2017 May 15;198(10):3765-3774
pubmed: 28416603
Nature. 1988 Aug 4;334(6181):395-402
pubmed: 3043226
Leukemia. 2019 Sep;33(9):2254-2265
pubmed: 31227779
Leukemia. 2001 Jan;15(1):134-40
pubmed: 11243381
Nature. 1983 Apr 14;302(5909):575-81
pubmed: 6300689
Proc Natl Acad Sci U S A. 2011 Dec 27;108(52):21194-9
pubmed: 22160699
Methods Mol Biol. 2000;132:365-86
pubmed: 10547847
Leukemia. 2007 Feb;21(2):207-14
pubmed: 17170731
Leukemia. 2019 Sep;33(9):2227-2240
pubmed: 31197258
Proc Natl Acad Sci U S A. 2010 Jan 26;107(4):1518-23
pubmed: 20080641
Leukemia. 1999 Jan;13(1):110-8
pubmed: 10049045
Leukemia. 2003 Dec;17(12):2257-317
pubmed: 14671650
Haematologica. 2017 Nov;102(11):1869-1877
pubmed: 28860343
Haematologica. 2018 Mar;103(3):e110-e114
pubmed: 29217777
Blood. 2012 Dec 20;120(26):5173-80
pubmed: 23074282
Nat Rev Immunol. 2003 Nov;3(11):890-9
pubmed: 14668805
Blood. 2010 Aug 19;116(7):1070-8
pubmed: 20457872
Blood. 1993 Feb 1;81(3):775-82
pubmed: 8427969
Leukemia. 2014 Jun;28(6):1299-307
pubmed: 24342950
Blood. 2015 Aug 20;126(8):1045-7
pubmed: 26294720
Sci Transl Med. 2012 May 16;4(134):134ra63
pubmed: 22593176
Nat Biotechnol. 2013 Feb;31(2):166-9
pubmed: 23334449
Nucleic Acids Res. 2012 Jul;40(Web Server issue):W205-8
pubmed: 22689644
Sci Transl Med. 2009 Dec 23;1(12):12ra23
pubmed: 20161664
Res Immunol. 1990 Sep;141(7):565-77
pubmed: 1965674
Leukemia. 2007 Apr;21(4):604-11
pubmed: 17287850
Nucleic Acids Res. 2005 Jan 1;33(Database issue):D256-61
pubmed: 15608191
Blood. 2012 Nov 22;120(22):4407-17
pubmed: 22932801
Lancet. 1998 Nov 28;352(9142):1731-8
pubmed: 9848348
Leukemia. 2007 Feb;21(2):215-21
pubmed: 17170730
Blood. 2015 May 28;125(22):3501-8
pubmed: 25862561
Blood. 2004 May 15;103(10):3798-804
pubmed: 14656882