A PAMP-triggered MAPK cascade inhibits phosphatidylinositol 4,5-bisphosphate production by PIP5K6 in Arabidopsis thaliana.
Arabidopsis
/ genetics
Arabidopsis Proteins
/ genetics
Dose-Response Relationship, Drug
Flagellin
/ chemistry
Gene Expression Regulation, Enzymologic
Gene Expression Regulation, Plant
/ physiology
MAP Kinase Signaling System
/ drug effects
Pathogen-Associated Molecular Pattern Molecules
/ administration & dosage
Phosphatidylinositol 4,5-Diphosphate
/ metabolism
Phosphotransferases (Alcohol Group Acceptor)
/ genetics
Protoplasts
/ metabolism
Flg22
MPK6
PI4P 5-kinase
PtdIns(4,5)P2
RbohD
mitogen-activated protein kinase (MAPK)
phosphoinositides
protein phosphorylation
Journal
The New phytologist
ISSN: 1469-8137
Titre abrégé: New Phytol
Pays: England
ID NLM: 9882884
Informations de publication
Date de publication:
10 2019
10 2019
Historique:
received:
01
09
2018
accepted:
30
06
2019
pubmed:
19
7
2019
medline:
12
5
2020
entrez:
19
7
2019
Statut:
ppublish
Résumé
The phosphoinositide kinase PIP5K6 has recently been identified as a target for the mitogen-activated protein kinase (MAPK) MPK6. Phosphorylation of PIP5K6 inhibited the production of phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P
Substances chimiques
Arabidopsis Proteins
0
Pathogen-Associated Molecular Pattern Molecules
0
Phosphatidylinositol 4,5-Diphosphate
0
Flagellin
12777-81-0
Phosphotransferases (Alcohol Group Acceptor)
EC 2.7.1.-
1-phosphatidylinositol-4-phosphate 5-kinase
EC 2.7.1.68
At3g07960 protein, Arabidopsis
EC 2.7.1.68
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
833-847Informations de copyright
© 2019 The Authors. New Phytologist © 2019 New Phytologist Trust.
Références
Antolin-Llovera M, Petutsching EK, Ried MK, Lipka V, Nurnberger T, Robatzek S, Parniske M. 2014. Knowing your friends and foes-plant receptor-like kinases as initiators of symbiosis or defence. New Phytologist 204: 791-802.
Ben Khaled S, Postma J, Robatzek S. 2015. A moving view: subcellular trafficking processes in pattern recognition receptor-triggered plant immunity. Annual Review of Phytopathology 53: 379-402.
Bethke G, Pecher P, Eschen-Lippold L, Tsuda K, Katagiri F, Glazebrook J, Scheel D, Lee J. 2012. Activation of the Arabidopsis thaliana mitogen-activated protein kinase MPK11 by the flagellin-derived elicitor peptide, flg22. Molecular Plant-Microbe Interactions 25: 471-480.
Bi G, Zhou Z, Wang W, Li L, Rao S, Wu Y, Zhang X, Menke FLH, Chen S, Zhou JM. 2018. Receptor-like cytoplasmic kinases directly link diverse pattern recognition receptors to the activation of mitogen-activated protein kinase cascades in Arabidopsis. Plant Cell 30: 1543-1561.
Blilou I, Xu J, Wildwater M, Willemsen V, Paponov I, Friml J, Heidstra R, Aida M, Palme K, Scheres B. 2005. The PIN auxin efflux facilitator network controls growth and patterning in Arabidopsis roots. Nature 433: 39-44.
Bradford MM. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry 72: 248-254.
DeWald DB, Torabinejad J, Jones CA, Shope JC, Cangelosi AR, Thompson JE, Prestwich GD, Hama H. 2001. Rapid accumulation of phosphatidylinositol 4,5-bisphosphate and inositol 1,4,5-trisphosphate correlates with calcium mobilization in salt-stressed Arabidopsis. Plant Physiology 126: 759-769.
Dobritzsch M, Lubken T, Eschen-Lippold L, Gorzolka K, Blum E, Matern A, Marillonnet S, Bottcher C, Drager B, Rosahl S. 2016. MATE transporter-dependent export of hydroxycinnamic acid amides. Plant Cell 28: 583-596.
Frescatada-Rosa M, Robatzek S, Kuhn H. 2015. Should I stay or should I go? Traffic control for plant pattern recognition receptors. Current Opinion in Plant Biology 28: 23-29.
Gerth K, Lin F, Menzel W, Krishnamoorthy P, Stenzel I, Heilmann M, Heilmann I. 2017. Guilt by association: a phenotype-based view of the plant phosphoinositide network. Annual Review of Plant Biology 68: 349-374.
Gomez-Gomez L, Boller T. 2000. FLS2: an LRR receptor-like kinase involved in the perception of the bacterial elicitor flagellin in Arabidopsis. Molecular Cell 5: 1003-1011.
Hao H, Fan L, Chen T, Li R, Li X, He Q, Botella MA, Lin J. 2014. Clathrin and membrane microdomains cooperatively regulate RbohD dynamics and activity in Arabidopsis. Plant Cell 26: 1729-1745.
Heilmann I. 2016a. Phosphoinositide signaling in plant development. Development 143: 2044-2055.
Heilmann I. 2016b. Plant phosphoinositide signaling - dynamics on demand. Biochimica et Biophysica Acta 1861: 1345-1351.
Heilmann I, Perera IY, Gross W, Boss WF. 1999. Changes in phosphoinositide metabolism with days in culture affect signal transduction pathways in Galdieria sulphuraria. Plant Physiology 119: 1331-1339.
Heilmann I, Perera IY, Gross W, Boss WF. 2001. Plasma membrane phosphatidylinositol 4,5-bisphosphate levels decrease with time in culture. Plant Physiology 126: 1507-1518.
Hellens RP, Edwards EA, Leyland NR, Bean S, Mullineaux PM. 2000. pGreen: a versatile and flexible binary Ti vector for Agrobacterium-mediated plant transformation. Plant Molecular Biology 42: 819-832.
Hempel F, Stenzel I, Heilmann M, Krishnamoorthy P, Menzel W, Golbik R, Helm S, Dobritzsch D, Baginsky S, Lee J et al. 2017. MAPKs influence pollen tube growth by controlling the formation of phosphatidylinositol 4,5-bisphosphate in an apical plasma membrane domain. Plant Cell 29: 3030-3050.
Im YJ, Brglez I, Dieck C, Perera IY, Boss WF. 2013. Phosphatidylinositol 4-kinase and phosphatidylinositol 4-phosphate 5-kinase assays. Methods in Molecular Biology 1009: 163-174.
Ischebeck T, Werner S, Krishnamoorthy P, Lerche J, Meijon M, Stenzel I, Löfke C, Wiessner T, Im YJ, Perera IY et al. 2013. Phosphatidylinositol 4,5-bisphosphate influences PIN polarization by controlling clathrin-mediated membrane trafficking in Arabidopsis. Plant Cell 25: 4894-4911.
Kadota Y, Sklenar J, Derbyshire P, Stransfeld L, Asai S, Ntoukakis V, Jones JD, Shirasu K, Menke F, Jones A et al. 2014. Direct regulation of the NADPH oxidase RBOHD by the PRR-associated kinase BIK1 during plant immunity. Molecular Cell 54: 43-55.
König S, Hoffmann M, Mosblech A, Heilmann I. 2008a. Determination of content and fatty acid composition of unlabeled phosphoinositide species by thin layer chromatography and gas chromatography. Analytical Biochemistry 378: 197-201.
König S, Ischebeck T, Lerche J, Stenzel I, Heilmann I. 2008b. Salt stress-induced association of phosphatidylinositol-4,5-bisphosphate with clathrin-coated vesicles in plants. Biochemical Journal 415: 387-399.
König S, Mosblech A, Heilmann I. 2007. Stress-inducible and constitutive phosphoinositide pools have distinct fatty acid patterns in Arabidopsis thaliana. FASEB Journal 21: 1958-1967.
Lassowskat I, Bottcher C, Eschen-Lippold L, Scheel D, Lee J. 2014. Sustained mitogen-activated protein kinase activation reprograms defense metabolism and phosphoprotein profile in Arabidopsis thaliana. Frontiers in Plant Science 5: 554.
Lee E, Vanneste S, Perez-Sancho J, Benitez-Fuente F, Strelau M, Macho AP, Botella MA, Friml J, Rosado A. 2019. Ionic stress enhances ER-PM connectivity via phosphoinositide-associated SYT1 contact site expansion in Arabidopsis. Proceedings of the National Academy of Sciences, USA 116: 1420-1429.
Lee J, Eschen-Lippold L, Lassowskat I, Bottcher C, Scheel D. 2015. Cellular reprogramming through mitogen-activated protein kinases. Frontiers in Plant Science 6: 940.
van Leeuwen W, Vermeer JE, Gadella TW Jr, Munnik T. 2007. Visualization of phosphatidylinositol 4,5-bisphosphate in the plasma membrane of suspension-cultured tobacco BY-2 cells and whole Arabidopsis seedlings. The Plant Journal 52: 1014-1026.
Li L, Li M, Yu L, Zhou Z, Liang X, Liu Z, Cai G, Gao L, Zhang X, Wang Y et al. 2014. The FLS2-associated kinase BIK1 directly phosphorylates the NADPH oxidase RbohD to control plant immunity. Cell Host & Microbe 15: 329-338.
Mao G, Meng X, Liu Y, Zheng Z, Chen Z, Zhang S. 2011. Phosphorylation of a WRKY transcription factor by two pathogen-responsive MAPKs drives phytoalexin biosynthesis in Arabidopsis. Plant Cell 23: 1639-1653.
Mei Y, Jia WJ, Chu YJ, Xue HW. 2012. Arabidopsis phosphatidylinositol monophosphate 5-kinase 2 is involved in root gravitropism through regulation of polar auxin transport by affecting the cycling of PIN proteins. Cell Research 22: 581-597.
Meng X, Xu J, He Y, Yang KY, Mordorski B, Liu Y, Zhang S. 2013. Phosphorylation of an ERF transcription factor by Arabidopsis MPK3/MPK6 regulates plant defense gene induction and fungal resistance. Plant Cell 25: 1126-1142.
Meng X, Zhang S. 2013. MAPK cascades in plant disease resistance signaling. Annual Review of Phytopathology 51: 245-266.
Mosblech A, König S, Stenzel I, Grzeganek P, Feussner I, Heilmann I. 2008. Phosphoinositide and inositolpolyphosphate-signaling in defense responses of Arabidopsis thaliana challenged by mechanical wounding. Molecular Plant 1: 249-261.
Müller J, Beck M, Mettbach U, Komis G, Hause G, Menzel D, Šamaj J. 2010. Arabidopsis MPK6 is involved in cell division plane control during early root development, and localizes to the pre-prophase band, phragmoplast, trans-Golgi network and plasma membrane. The Plant Journal 61: 234-248.
Munnik T, Nielsen E. 2011. Green light for polyphosphoinositide signals in plants. Current Opinion in Plant Biology 14: 489-497.
Nakagawa T, Kurose T, Hino T, Tanaka K, Kawamukai M, Niwa Y, Toyooka K, Matsuoka K, Jinbo T, Kimura T. 2007. Development of series of gateway binary vectors, pGWBs, for realizing efficient construction of fusion genes for plant transformation. Journal of Bioscience and Bioengineering 104: 34-41.
Pecher P, Eschen-Lippold L, Herklotz S, Kuhle K, Naumann K, Bethke G, Uhrig J, Weyhe M, Scheel D, Lee J. 2014. The Arabidopsis thaliana mitogen-activated protein kinases MPK3 and MPK6 target a subclass of ‘VQ-motif’-containing proteins to regulate immune responses. New Phytologist 203: 592-606.
Perera IY, Heilmann I, Boss WF. 1999. Transient and sustained increases in inositol 1,4,5-trisphosphate precede the differential growth response in gravistimulated maize pulvini. Proceedings of the National Academy of Sciences, USA 96: 5838-5843.
Pical C, Westergren T, Dove SK, Larsson C, Sommarin M. 1999. Salinity and hyperosmotic stress induce rapid increases in phosphatidylinositol 4,5-bisphosphate, diacylglycerol pyrophosphate, and phosphatidylcholine in Arabidopsis thaliana cells. Journal of Biological Chemistry 274: 38232-38240.
Pitzschke A, Schikora A, Hirt H. 2009. MAPK cascade signalling networks in plant defence. Current Opinion in Plant Biology 12: 421-426.
Pogany M, von Rad U, Grun S, Dongo A, Pintye A, Simoneau P, Bahnweg G, Kiss L, Barna B, Durner J. 2009. Dual roles of reactive oxygen species and NADPH oxidase RBOHD in an Arabidopsis-Alternaria pathosystem. Plant Physiology 151: 1459-1475.
Potocky M, Pejchar P, Gutkowska M, Jimenez-Quesada MJ, Potocka A, Alche Jde D, Kost B, Zarsky V. 2012. NADPH oxidase activity in pollen tubes is affected by calcium ions, signaling phospholipids and Rac/Rop GTPases. Journal of Plant Physiology 169: 1654-1663.
Robatzek S, Chinchilla D, Boller T. 2006. Ligand-induced endocytosis of the pattern recognition receptor FLS2 in Arabidopsis. Genes & Development 20: 537-542.
Rodriguez MC, Petersen M, Mundy J. 2010. Mitogen-activated protein kinase signaling in plants. Annual Review of Plant Biology 61: 621-649.
Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, Saalfeld S, Schmid B et al. 2012. Fiji: an open-source platform for biological-image analysis. Nature Methods 9: 676-682.
Simon ML, Platre MP, Assil S, van Wijk R, Chen WY, Chory J, Dreux M, Munnik T, Jaillais Y. 2014. A multi-colour/multi-affinity marker set to visualize phosphoinositide dynamics in Arabidopsis. The Plant Journal 77: 322-337.
Stenzel I, Ischebeck T, König S, Holubowska A, Sporysz M, Hause B, Heilmann I. 2008. The type B phosphatidylinositol-4-phosphate 5-kinase 3 is essential for root hair formation in Arabidopsis thaliana. Plant Cell 20: 124-141.
Stenzel I, Ischebeck T, Quint M, Heilmann I. 2012. Variable regions of PI4P 5-kinases direct PtdIns(4,5)P2 toward alternative regulatory functions in tobacco pollen tubes. Frontiers in Plant Science 2: 1-14.
Sun T, Nitta Y, Zhang Q, Wu D, Tian H, Lee JS, Zhang Y. 2018. Antagonistic interactions between two MAP kinase cascades in plant development and immune signaling. EMBO Reports 19: e45324.
Tejos R, Sauer M, Vanneste S, Palacios-Gomez M, Li H, Heilmann M, van Wijk R, Vermeer JE, Heilmann I, Munnik T et al. 2014. Bipolar plasma membrane distribution of phosphoinositides and their requirement for auxin-mediated cell polarity and patterning in Arabidopsis. Plant Cell 26: 2114-2128.
Tena G, Boudsocq M, Sheen J. 2011. Protein kinase signaling networks in plant innate immunity. Current Opinion in Plant Biology 14: 519-529.
Tinevez J-Y, Perry N, Schindelin J, Hoopes GM, Reynolds GD, Laplantine E, Bednarek SY, Shorte SL, Eliceiri KW. 2017. TrackMate: An open and extensible platform for single-particle tracking. Methods 115: 80-90.
Wang F, Shang Y, Fan B, Yu JQ, Chen Z. 2014. Arabidopsis LIP5, a positive regulator of multivesicular body biogenesis, is a critical target of pathogen-responsive MAPK cascade in plant basal defense. PLoS Pathogens 10: e1004243.
Xu J, Xie J, Yan C, Zou X, Ren D, Zhang S. 2014. A chemical genetic approach demonstrates that MPK3/MPK6 activation and NADPH oxidase-mediated oxidative burst are two independent signaling events in plant immunity. The Plant Journal 77: 222-234.
Yoo SD, Cho YH, Sheen J. 2007. Arabidopsis mesophyll protoplasts: a versatile cell system for transient gene expression analysis. Nature Protocols 2: 1565-1572.
Zhao Y, Yan A, Feijo JA, Furutani M, Takenawa T, Hwang I, Fu Y, Yang Z. 2010. Phosphoinositides regulate clathrin-dependent endocytosis at the tip of pollen tubes in Arabidopsis and tobacco. Plant Cell 22: 4031-4044.