The potential of VKORC1 polymorphisms in Mustelidae for evolving anticoagulant resistance through selection along the food chain.
Journal
PloS one
ISSN: 1932-6203
Titre abrégé: PLoS One
Pays: United States
ID NLM: 101285081
Informations de publication
Date de publication:
2019
2019
Historique:
received:
21
02
2019
accepted:
13
08
2019
entrez:
30
8
2019
pubmed:
30
8
2019
medline:
5
3
2020
Statut:
epublish
Résumé
In response to strong selection, new mutations can arise quickly and sweep through populations, particularly, if survival and reproduction depend on certain allele copies for adaptation to rapidly changing environments, like resistance against deadly diseases or strong toxins. Since the 1950s, resistance to anticoagulant rodenticides in several rodents has emerged through single nucleotide mutations in the vitamin-K-epoxid-reductase-complex-subunit-1 (VKORC1) gene, often located in its exon 3. Detection of high prevalence and concentrations of anticoagulant rodenticides in non-target vertebrates, including carnivorous Mustelidae, let us assume that secondary exposure by feeding on poisoned prey may also cause selection along the food chain and we hypothesized that VKORC1-based resistance might also have evolved in rodents' predators. Using newly-developed mustelid-specific primers for direct sequencing of genomic DNA, we studied VKORC1-DNA-polymorphisms in 115 mustelids of five species (Martes martes, M. foina, Mustela nivalis, M. erminea, M. putorius), obtained from northern Denmark, yielding six sites with nonsynonymous and several synonymous amino acid polymorphisms in exon 3. Comparison of these VKORC1-genotypes with hepatic rodenticide residues (obtained by HPLC combined with fluorescence or mass spectrometry) in 83 individuals (except M. martes), using generalized linear models, suggested that anticoagulant levels depended on species and specific polymorphisms. Although most VKORC-1 polymorphisms may present standing genetic variation, some are situated in resistance-mediating membrane parts of the VKORC1-encoded protein, and might be a result of selection due to exposure to anticoagulant poisons. Our new molecular markers might allow detecting indirect effects of anticoagulant rodenticides on rodent predator populations in the future.
Identifiants
pubmed: 31465484
doi: 10.1371/journal.pone.0221706
pii: PONE-D-19-05241
pmc: PMC6715177
doi:
Substances chimiques
Amino Acids
0
Anticoagulants
0
Vitamin K Epoxide Reductases
EC 1.17.4.4
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
e0221706Déclaration de conflit d'intérêts
The authors have declared that no competing interests exist.
Références
Pest Manag Sci. 2003 Aug;59(8):913-20
pubmed: 12916772
Circulation. 1959 Jan;19(1):97-107
pubmed: 13619027
Nature. 2004 Feb 5;427(6974):537-41
pubmed: 14765194
Nature. 2004 Feb 5;427(6974):541-4
pubmed: 14765195
J Wildl Dis. 2004 Oct;40(4):688-95
pubmed: 15650086
J Biol Chem. 2005 Apr 22;280(16):16410-6
pubmed: 15716279
Genetics. 2005 Apr;169(4):2335-52
pubmed: 15716498
Genetics. 2005 Aug;170(4):1839-47
pubmed: 15879509
Thromb Haemost. 2005 Oct;94(4):780-6
pubmed: 16270630
Pest Manag Sci. 2006 Sep;62(9):862-71
pubmed: 16789046
J Biol Chem. 1991 Mar 15;266(8):4789-97
pubmed: 1705934
Trends Ecol Evol. 2008 Jan;23(1):38-44
pubmed: 18006185
Genet Med. 2008 Feb;10(2):89-98
pubmed: 18281915
Vitam Horm. 2008;78:XIX-XX
pubmed: 18374186
Am Heart J. 1948 Dec;36(6):801-15
pubmed: 18893568
Research. 1948 Apr;1(7):334-6
pubmed: 18911615
J Vet Pharmacol Ther. 2008 Oct;31(5):437-45
pubmed: 19000263
Arch Environ Contam Toxicol. 2010 Feb;58(2):451-9
pubmed: 19826750
Curr Biol. 2010 Feb 23;20(4):R208-15
pubmed: 20178769
Comp Biochem Physiol C Toxicol Pharmacol. 2010 Jun;152(1):114-9
pubmed: 20346414
Sci Total Environ. 2011 May 15;409(12):2373-8
pubmed: 21477845
Int J Epidemiol. 2011 Oct;40(5):1329-41
pubmed: 21729879
Pest Manag Sci. 2012 Feb;68(2):254-9
pubmed: 21898757
Pest Manag Sci. 2012 Mar;68(3):378-85
pubmed: 21919186
Arch Environ Contam Toxicol. 2012 Oct;63(3):437-44
pubmed: 22588365
PLoS One. 2012;7(7):e40163
pubmed: 22808110
Trends Ecol Evol. 2012 Dec;27(12):698-704
pubmed: 22975220
Blood. 2013 Oct 10;122(15):2743-50
pubmed: 23982176
Nat Rev Genet. 2014 Jun;15(6):379-93
pubmed: 24776769
Pest Manag Sci. 2016 Mar;72(3):574-9
pubmed: 25904314
Mol Ecol. 2016 Jan;25(1):79-88
pubmed: 26108992
J Hered. 2015 Sep-Oct;106(5):637-43
pubmed: 26223233
PLoS One. 2015 Sep 29;10(9):e0139191
pubmed: 26418154
Sci Total Environ. 2016 Feb 15;544:150-7
pubmed: 26657360
Ecotoxicology. 2016 Aug;25(6):1061-71
pubmed: 27151403
Trends Genet. 2016 Jul;32(7):408-418
pubmed: 27185237
Science. 2016 Dec 09;354(6317):1305-1308
pubmed: 27940876
PLoS One. 2017 Sep 8;12(9):e0184015
pubmed: 28886097
Sci Total Environ. 2018 Jan 15;612:1358-1364
pubmed: 28898942
Mol Ecol. 2018 Mar;27(5):1170-1187
pubmed: 29427407
Environ Pollut. 2018 May;236:689-698
pubmed: 29438955
Pest Manag Sci. 2019 Apr;75(4):900-907
pubmed: 30175431
J Hyg (Lond). 1965 Sep;63(3):417-25
pubmed: 5212842
Bull Environ Contam Toxicol. 1996 Jan;56(1):8-15
pubmed: 9026161