Activating mutations in CSF1R and additional receptor tyrosine kinases in histiocytic neoplasms.
Adolescent
Adult
Aminopyridines
/ pharmacology
Anaplastic Lymphoma Kinase
/ genetics
Benzothiazoles
/ pharmacology
Child
Child, Preschool
Female
Genome, Human
Hematologic Neoplasms
/ drug therapy
Histiocytosis
/ drug therapy
Humans
Infant
Male
Mutation
Picolinic Acids
/ pharmacology
Protein Kinase Inhibitors
/ pharmacology
Proto-Oncogene Proteins c-ret
/ genetics
Pyrazoles
/ pharmacology
Pyridines
/ pharmacology
Pyrroles
/ pharmacology
Receptor Protein-Tyrosine Kinases
/ genetics
Receptors, Granulocyte-Macrophage Colony-Stimulating Factor
/ genetics
Twins, Monozygotic
Exome Sequencing
Young Adult
Journal
Nature medicine
ISSN: 1546-170X
Titre abrégé: Nat Med
Pays: United States
ID NLM: 9502015
Informations de publication
Date de publication:
12 2019
12 2019
Historique:
received:
28
05
2019
accepted:
17
10
2019
pubmed:
27
11
2019
medline:
28
1
2020
entrez:
27
11
2019
Statut:
ppublish
Résumé
Histiocytoses are clonal hematopoietic disorders frequently driven by mutations mapping to the BRAF and MEK1 and MEK2 kinases. Currently, however, the developmental origins of histiocytoses in patients are not well understood, and clinically meaningful therapeutic targets outside of BRAF and MEK are undefined. In this study, we uncovered activating mutations in CSF1R and rearrangements in RET and ALK that conferred dramatic responses to selective inhibition of RET (selpercatinib) and crizotinib, respectively, in patients with histiocytosis.
Identifiants
pubmed: 31768065
doi: 10.1038/s41591-019-0653-6
pii: 10.1038/s41591-019-0653-6
pmc: PMC6898787
mid: NIHMS1541330
doi:
Substances chimiques
4-(2-(2-hydroxycyclohexylamino)benzothiazol-6-yloxy)pyridine-2-carboxylic acid methylamide
0
Aminopyridines
0
Benzothiazoles
0
CSF1R protein, human
0
Picolinic Acids
0
Protein Kinase Inhibitors
0
Pyrazoles
0
Pyridines
0
Pyrroles
0
Receptors, Granulocyte-Macrophage Colony-Stimulating Factor
0
pexidartinib
6783M2LV5X
selpercatinib
CEGM9YBNGD
ALK protein, human
EC 2.7.10.1
Anaplastic Lymphoma Kinase
EC 2.7.10.1
Proto-Oncogene Proteins c-ret
EC 2.7.10.1
RET protein, human
EC 2.7.10.1
Receptor Protein-Tyrosine Kinases
EC 2.7.10.1
Types de publication
Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
1839-1842Subventions
Organisme : NCI NIH HHS
ID : R01 CA201247
Pays : United States
Organisme : NCATS NIH HHS
ID : UL1 TR001857
Pays : United States
Organisme : NCI NIH HHS
ID : L30 CA231804
Pays : United States
Organisme : NIAID NIH HHS
ID : R01 AI130345
Pays : United States
Organisme : NHLBI NIH HHS
ID : R01 HL138090
Pays : United States
Organisme : NCI NIH HHS
ID : P30 CA008748
Pays : United States
Organisme : NCI NIH HHS
ID : K08 CA218901
Pays : United States
Références
Badalian-Very, G. et al. Blood 116, 1919–1923 (2010).
doi: 10.1182/blood-2010-04-279083
Chakraborty, R. et al. Mutually exclusive recurrent somatic mutations in MAP2K1 and BRAF support a central role for ERK activation in LCH pathogenesis. Blood 124, 3007–3015 (2014).
doi: 10.1182/blood-2014-05-577825
Diamond, E. L. et al. Diverse and targetable kinase alterations drive histiocytic neoplasms. Cancer Dis. 6, 154–165 (2016).
doi: 10.1158/2159-8290.CD-15-0913
Hyman, D. M. et al. Vemurafenib in multiple nonmelanoma cancers with BRAF V600 mutations. N. Engl. J. Med. 373, 726–736 (2015).
doi: 10.1056/NEJMoa1502309
Diamond, E. L. et al. Efficacy of MEK inhibition in patients with histiocytic neoplasms. Nature 567, 521–524 (2019).
doi: 10.1038/s41586-019-1012-y
Katz, A. M. et al. Langerhans cell histiocytosis in monozygotic twins. J. Am. Acad. Dermatol. 24, 32–37 (1991).
doi: 10.1016/0190-9622(91)70005-M
Chantorn, R., Wisuthsarewong, W., Aanpreung, P., Sanpakit, K. & Manonukul, J. Severe congenital systemic juvenile xanthogranuloma in monozygotic twins. Pediatr. Dermatol. 25, 470–473 (2008).
doi: 10.1111/j.1525-1470.2008.00752.x
Dai, X. M. et al. Targeted disruption of the mouse colony-stimulating factor 1 receptor gene results in osteopetrosis, mononuclear phagocyte deficiency, increased primitive progenitor cell frequencies, and reproductive defects. Blood 99, 111–120 (2002).
doi: 10.1182/blood.V99.1.111
Mass, E. et al. A somatic mutation in erythro-myeloid progenitors causes neurodegenerative disease. Nature 549, 389–393 (2017).
doi: 10.1038/nature23672
Cambiaghi, S., Restano, L. & Caputo, R. Juvenile xanthogranuloma associated with neurofibromatosis 1: 14 patients without evidence of hematologic malignancies. Pediatr. Dermatol. 21, 97–101 (2004).
doi: 10.1111/j.0736-8046.2004.21201.x
Elegheert, J. et al. Extracellular complexes of the hematopoietic human and mouse CSF-1 receptor are driven by common assembly principles. Structure 19, 1762–1772 (2011).
doi: 10.1016/j.str.2011.10.012
Felix, J. et al. Human IL-34 and CSF-1 establish structurally similar extracellular assemblies with their common hematopoietic receptor. Structure 21, 528–539 (2013).
doi: 10.1016/j.str.2013.01.018
Felix, J. et al. Structure and assembly mechanism of the signaling complex mediated by human CSF-1. Structure 23, 1621–1631 (2015).
doi: 10.1016/j.str.2015.06.019
Elegheert, J. et al. Allosteric competitive inactivation of hematopoietic CSF-1 signaling by the viral decoy receptor BARF1. Nat. Struct. Mol. Biol. 19, 938–947 (2012).
doi: 10.1038/nsmb.2367
Walter, M. et al. The 2.7 Å crystal structure of the autoinhibited human c-Fms kinase domain. J. Mol. Biol. 367, 839–847 (2007).
doi: 10.1016/j.jmb.2007.01.036
Memorial Sloan Kettering-Integrated Mutation Profiling of Actionable Cancer Targets (MSK-IMPACT): a hybridization capture-based next-generation sequencing clinical assay for solid tumor molecular oncology. J. Mol. Diagn. 17, 251–264 (2015).
Durham, B. H. et al. Genomic analysis of hairy cell leukemia identifies novel recurrent genetic alterations. Blood 130, 1644–1648 (2017).
doi: 10.1182/blood-2017-01-765107
Benayed, R. et al. High yield of RNA sequencing for targetable kinase fusions in lung adenocarcinomas with no mitogenic driver alteration detected by DNA sequencing and low tumor mutation burden. Clin. Cancer Res. 25, 4712–4722 (2019).
doi: 10.1158/1078-0432.CCR-19-0225
Gruber, T. A. et al. An Inv(16)(p13.3q24.3)-encoded CBFA2T3–GLIS2 fusion protein defines an aggressive subtype of pediatric acute megakaryoblastic leukemia. Cancer Cell 22, 683–697 (2012).
doi: 10.1016/j.ccr.2012.10.007
Zhang, J. et al. The genetic basis of early T-cell precursor acute lymphoblastic leukaemia. Nature 481, 157–163 (2012).
doi: 10.1038/nature10725
Rosenthal, R., McGranahan, N., Herrero, J., Taylor, B. S. & Swanton, C. DeconstructSigs: delineating mutational processes in single tumors distinguishes DNA repair deficiencies and patterns of carcinoma evolution. Genome Biol. 17, 31 (2016).
doi: 10.1186/s13059-016-0893-4
Alexandrov, L. B. et al. Signatures of mutational processes in human cancer. Nature 500, 415–421 (2013).
doi: 10.1038/nature12477
Huang, M. N. et al. MSIseq: software for assessing microsatellite instability from catalogs of somatic mutations. Sci. Rep. 5, 13321 (2015).
doi: 10.1038/srep13321
Cortes-Ciriano, I., Lee, S., Park, W. Y., Kim, T. M. & Park, P. J. A molecular portrait of microsatellite instability across multiple cancers. Nat. Comm. 8, 15180 (2017).
doi: 10.1038/ncomms15180
Alexandrov, L. B. et al. The repertoire of mutational signatures in human cancer. Preprint at bioRxiv https://doi.org/10.1101/322859 (2018).
Walters, D. K. et al. Activating alleles of JAK3 in acute megakaryoblastic leukemia. Cancer Cell 10, 65–75 (2006).
doi: 10.1016/j.ccr.2006.06.002
Cammenga, J. et al. Extracellular KIT receptor mutants, commonly found in core binding factor AML, are constitutively active and respond to imatinib mesylate. Blood 106, 3958–3961 (2005).
doi: 10.1182/blood-2005-02-0583
Maxson, J. E. et al. The colony-stimulating factor 3 receptor T640N mutation is oncogenic, sensitive to JAK inhibition, and mimics T618I. Clin. Cancer Res. 22, 757–764 (2016).
doi: 10.1158/1078-0432.CCR-14-3100