Histone hyperacetylation disrupts core gene regulatory architecture in rhabdomyosarcoma.


Journal

Nature genetics
ISSN: 1546-1718
Titre abrégé: Nat Genet
Pays: United States
ID NLM: 9216904

Informations de publication

Date de publication:
12 2019
Historique:
received: 03 10 2018
accepted: 23 10 2019
entrez: 1 12 2019
pubmed: 1 12 2019
medline: 18 1 2020
Statut: ppublish

Résumé

Core regulatory transcription factors (CR TFs) orchestrate the placement of super-enhancers (SEs) to activate transcription of cell-identity specifying gene networks, and are critical in promoting cancer. Here, we define the core regulatory circuitry of rhabdomyosarcoma and identify critical CR TF dependencies. These CR TFs build SEs that have the highest levels of histone acetylation, yet paradoxically the same SEs also harbor the greatest amounts of histone deacetylases. We find that hyperacetylation selectively halts CR TF transcription. To investigate the architectural determinants of this phenotype, we used absolute quantification of architecture (AQuA) HiChIP, which revealed erosion of native SE contacts, and aberrant spreading of contacts that involved histone acetylation. Hyperacetylation removes RNA polymerase II (RNA Pol II) from core regulatory genetic elements, and eliminates RNA Pol II but not BRD4 phase condensates. This study identifies an SE-specific requirement for balancing histone modification states to maintain SE architecture and CR TF transcription.

Identifiants

pubmed: 31784732
doi: 10.1038/s41588-019-0534-4
pii: 10.1038/s41588-019-0534-4
pmc: PMC6886578
mid: NIHMS1541485
doi:

Substances chimiques

Benzamides 0
FOXO1 protein, human 0
Forkhead Box Protein O1 0
Histones 0
Pyridines 0
SOX8 protein, human 0
SOXE Transcription Factors 0
Transcription Factors 0
entinostat 1ZNY4FKK9H
RNA Polymerase II EC 2.7.7.-
Histone Deacetylases EC 3.5.1.98

Types de publication

Journal Article Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

1714-1722

Subventions

Organisme : NCI NIH HHS
ID : P30 CA045508
Pays : United States
Organisme : NIGMS NIH HHS
ID : R01 GM118653
Pays : United States
Organisme : NCI NIH HHS
ID : R21 CA245859
Pays : United States
Organisme : Intramural NIH HHS
ID : Z99 CA999999
Pays : United States

Références

Nat Biotechnol. 2020 Jan;38(1):50-55
pubmed: 31712774
Nat Genet. 2017 Nov;49(11):1602-1612
pubmed: 28945252
Nat Methods. 2013 Nov;10(11):1122-6
pubmed: 24097271
J Biol Chem. 2003 Aug 8;278(32):29769-75
pubmed: 12782625
Cell. 2014 Oct 9;159(2):374-387
pubmed: 25303531
Proc Natl Acad Sci U S A. 2005 Oct 25;102(43):15545-50
pubmed: 16199517
Cancer Cell. 2018 Sep 10;34(3):411-426.e19
pubmed: 30146332
Nat Biotechnol. 2015 Jun;33(6):661-7
pubmed: 25961408
Genome Biol. 2015 Dec 01;16:259
pubmed: 26619908
Cell Rep. 2014 Nov 6;9(3):1163-70
pubmed: 25437568
Nat Genet. 2018 Nov;50(11):1553-1564
pubmed: 30349114
BMC Biol. 2021 Feb 15;19(1):30
pubmed: 33588838
Cell Rep. 2015 Nov 17;13(7):1444-1455
pubmed: 26549458
Cell. 2015 May 21;161(5):1202-1214
pubmed: 26000488
Sci Transl Med. 2018 Jul 4;10(448):
pubmed: 29973406
Science. 2018 Jul 27;361(6400):
pubmed: 29930091
Cell. 2014 Dec 18;159(7):1665-80
pubmed: 25497547
Nat Protoc. 2020 Mar;15(3):1209-1236
pubmed: 32051612
Cell Syst. 2016 Jul;3(1):95-8
pubmed: 27467249
Cell. 2005 Sep 23;122(6):947-56
pubmed: 16153702
Cancer Discov. 2017 Aug;7(8):884-899
pubmed: 28446439
Nat Methods. 2016 Nov;13(11):919-922
pubmed: 27643841
Nat Rev Mol Cell Biol. 2017 May;18(5):285-298
pubmed: 28225081
J Clin Invest. 2016 Nov 1;126(11):4237-4249
pubmed: 27760049
Cell. 2017 Sep 21;171(1):163-178.e19
pubmed: 28844694
Mol Cell. 2019 Jan 3;73(1):61-72.e3
pubmed: 30472189
Cell. 2016 Jul 14;166(2):358-368
pubmed: 27293191
Cell. 2013 Nov 7;155(4):934-47
pubmed: 24119843
Elife. 2016 May 03;5:
pubmed: 27138339
Science. 2018 Jul 27;361(6400):412-415
pubmed: 29930094
J Biol Methods. 2014;1(2):
pubmed: 25606571
Cell. 2013 Mar 14;152(6):1237-51
pubmed: 23498934
DNA Res. 2009 Feb;16(1):45-58
pubmed: 19001483
Proc Natl Acad Sci U S A. 1964 May;51:786-94
pubmed: 14172992
Nat Struct Mol Biol. 2014 Dec;21(12):1047-57
pubmed: 25383670
Mol Cell. 2018 Mar 15;69(6):1017-1027.e6
pubmed: 29526696
Genes Dev. 1996 Nov 1;10(21):2657-83
pubmed: 8946909
Science. 2018 Mar 9;359(6380):
pubmed: 29590011
Nat Commun. 2019 Jul 8;10(1):3004
pubmed: 31285436
Cell. 2013 Apr 11;153(2):307-19
pubmed: 23582322
Cell. 2007 May 18;129(4):823-37
pubmed: 17512414
Nat Methods. 2013 Dec;10(12):1213-8
pubmed: 24097267
Nat Struct Mol Biol. 2018 Jan;25(1):61-72
pubmed: 29323272
Nat Genet. 2018 Sep;50(9):1240-1246
pubmed: 30127528
Nature. 2016 Feb 4;530(7588):57-62
pubmed: 26814967
Proc Natl Acad Sci U S A. 1966 Apr;55(4):805-12
pubmed: 5219687
Nat Genet. 2017 Dec;49(12):1779-1784
pubmed: 29083409
Methods Mol Biol. 2014;1150:3-20
pubmed: 24743988
Semin Cell Dev Biol. 2017 Mar;63:35-42
pubmed: 27552919
Genome Res. 2016 Mar;26(3):385-96
pubmed: 26843070
Elife. 2017 Jan 12;6:
pubmed: 28080960
Nucleic Acids Res. 2018 Feb 28;46(4):1756-1776
pubmed: 29240919
Clin Cancer Res. 2016 Aug 1;22(15):3810-20
pubmed: 26994145
Cell. 2018 Feb 8;172(4):650-665
pubmed: 29425488
Nature. 2009 Oct 1;461(7264):664-8
pubmed: 19794495

Auteurs

Berkley E Gryder (BE)

Genetics Branch, NCI, NIH, Bethesda, MD, USA. berkley.gryder@nih.gov.

Silvia Pomella (S)

Genetics Branch, NCI, NIH, Bethesda, MD, USA.
Department of Oncohematology, Ospedale Pediatrico Bambino Gesù Research Institute, IRCCS, Rome, Italy.

Carly Sayers (C)

Pediatric Oncology Branch, CCR, NCI, NIH, Bethesda, MD, USA.

Xiaoli S Wu (XS)

Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA.
Genetics Program, Stony Brook University, Stony Brook, NY, USA.

Young Song (Y)

Genetics Branch, NCI, NIH, Bethesda, MD, USA.

Anna M Chiarella (AM)

Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, Chapel Hill, NC, USA.

Sukriti Bagchi (S)

Pediatric Oncology Branch, CCR, NCI, NIH, Bethesda, MD, USA.

Hsien-Chao Chou (HC)

Genetics Branch, NCI, NIH, Bethesda, MD, USA.

Ranu S Sinniah (RS)

Genetics Branch, NCI, NIH, Bethesda, MD, USA.

Ashley Walton (A)

Genetics Branch, NCI, NIH, Bethesda, MD, USA.

Xinyu Wen (X)

Genetics Branch, NCI, NIH, Bethesda, MD, USA.
Advanced Biomedical Computational Science, Frederick National Laboratory for Cancer Research, Frederick, MD, USA.

Rossella Rota (R)

Department of Oncohematology, Ospedale Pediatrico Bambino Gesù Research Institute, IRCCS, Rome, Italy.

Nathaniel A Hathaway (NA)

Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, Chapel Hill, NC, USA.

Keji Zhao (K)

Systems Biology Center, NHLBI, NIH, Bethesda, MD, USA.

Jiji Chen (J)

Advanced Imaging and Microscopy Resource, NIBIB, NIH, Bethesda, MD, USA.

Christopher R Vakoc (CR)

Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA.

Jack F Shern (JF)

Pediatric Oncology Branch, CCR, NCI, NIH, Bethesda, MD, USA.

Benjamin Z Stanton (BZ)

Genetics Branch, NCI, NIH, Bethesda, MD, USA.
The Research Institute at Nationwide, Nationwide Children's Hospital, Columbus, OH, USA.

Javed Khan (J)

Genetics Branch, NCI, NIH, Bethesda, MD, USA. khanjav@mail.nih.gov.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH