Potent Zika and dengue cross-neutralizing antibodies induced by Zika vaccination in a dengue-experienced donor.
Animals
Antibodies, Monoclonal
/ immunology
Antibodies, Neutralizing
/ immunology
Antibodies, Viral
/ immunology
Chlorocebus aethiops
Cross Reactions
Dengue
/ immunology
Dengue Virus
Epitope Mapping
Female
Flavivirus
/ metabolism
Humans
Immunoglobulin G
/ chemistry
Inhibitory Concentration 50
Mice
Mice, Inbred BALB C
Mice, Inbred C57BL
Protein Binding
Protein Domains
Tissue Donors
Vaccination
Vaccines, Inactivated
/ therapeutic use
Vero Cells
Viral Vaccines
/ therapeutic use
Viremia
Zika Virus
Zika Virus Infection
/ immunology
Journal
Nature medicine
ISSN: 1546-170X
Titre abrégé: Nat Med
Pays: United States
ID NLM: 9502015
Informations de publication
Date de publication:
02 2020
02 2020
Historique:
received:
18
01
2019
accepted:
18
12
2019
pubmed:
6
2
2020
medline:
22
4
2020
entrez:
5
2
2020
Statut:
ppublish
Résumé
Zika virus (ZIKV) has caused significant disease, with widespread cases of neurological pathology and congenital neurologic defects. Rapid vaccine development has led to a number of candidates capable of eliciting potent ZIKV-neutralizing antibodies (reviewed in refs.
Identifiants
pubmed: 32015557
doi: 10.1038/s41591-019-0746-2
pii: 10.1038/s41591-019-0746-2
pmc: PMC7018608
mid: NIHMS1546987
doi:
Substances chimiques
Antibodies, Monoclonal
0
Antibodies, Neutralizing
0
Antibodies, Viral
0
Immunoglobulin G
0
Vaccines, Inactivated
0
Viral Vaccines
0
Types de publication
Clinical Trial, Phase I
Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, Non-P.H.S.
Langues
eng
Sous-ensembles de citation
IM
Pagination
228-235Subventions
Organisme : Intramural NIH HHS
ID : ZIA AI005143
Pays : United States
Organisme : NIAID NIH HHS
ID : HHSN272201000021C
Pays : United States
Organisme : NIAID NIH HHS
ID : HHSN272201300021I
Pays : United States
Organisme : Intramural NIH HHS
ID : Z99 AI999999
Pays : United States
Organisme : NIAID NIH HHS
ID : HHSN272201300021C
Pays : United States
Organisme : NIAID NIH HHS
ID : HHSN272201000021I
Pays : United States
Organisme : NIAID NIH HHS
ID : UM1 AI108568
Pays : United States
Organisme : NIAID NIH HHS
ID : K23 AI114381
Pays : United States
Organisme : BLRD VA
ID : I01 BX003714
Pays : United States
Organisme : NIGMS NIH HHS
ID : P41 GM103403
Pays : United States
Organisme : NIAID NIH HHS
ID : HHSN272201400058C
Pays : United States
Organisme : NCATS NIH HHS
ID : UL1 TR001102
Pays : United States
Références
Barouch, D. H., Thomas, S. J. & Michael, N. L. Prospects for a Zika virus vaccine. Immunity 46, 176–182 (2017).
pubmed: 28228277
pmcid: 28228277
Morabito, K. M. & Graham, B. S. Zika virus vaccine development. J. Infect. Dis. 216, S957–S963 (2017).
pubmed: 29267918
pmcid: 29267918
Pierson, T. C. & Diamond, M. S. The emergence of Zika virus and its new clinical syndromes. Nature 560, 573–581 (2018).
pubmed: 30158602
pmcid: 30158602
Abbink, P. et al. Protective efficacy of multiple vaccine platforms against Zika virus challenge in rhesus monkeys. Science 353, 1129–1132 (2016).
pubmed: 27492477
pmcid: 27492477
Abbink, P. et al. Durability and correlates of vaccine protection against Zika virus in rhesus monkeys. Sci. Transl. Med. 9, eaao4163 (2017).
pubmed: 5747972
pmcid: 5747972
Larocca, R. A. et al. Vaccine protection against Zika virus from Brazil. Nature 536, 474–478 (2016).
pubmed: 5003703
pmcid: 5003703
Modjarrad, K. et al. Preliminary aggregate safety and immunogenicity results from three trials of a purified inactivated Zika virus vaccine candidate: phase 1, randomised, double-blind, placebo-controlled clinical trials. Lancet 391, 563–571 (2018).
pubmed: 29217375
pmcid: 29217375
Tiller, T. et al. Efficient generation of monoclonal antibodies from single human B cells by single cell RT-PCR and expression vector cloning. J. Immunol. Methods 329, 112–124 (2008).
Liao, H. X. et al. High-throughput isolation of immunoglobulin genes from single human B cells and expression as monoclonal antibodies. J. Virol. Methods 158, 171–179 (2009).
pubmed: 19428587
pmcid: 19428587
Wu, X. et al. Rational design of envelope identifies broadly neutralizing human monoclonal antibodies to HIV-1. Science 329, 856–861 (2010).
pubmed: 20616233
pmcid: 20616233
Doria-Rose, N. A. et al. Developmental pathway for potent V1V2-directed HIV-neutralizing antibodies. Nature 509, 55–62 (2014).
pubmed: 24590074
pmcid: 24590074
Barba-Spaeth, G. et al. Structural basis of potent Zika-dengue virus antibody cross-neutralization. Nature 536, 48–53 (2016).
pubmed: 27338953
pmcid: 27338953
Zhao, H. et al. Structural basis of Zika virus-specific antibody protection. Cell 166, 1016–1027 (2016).
pubmed: 27475895
pmcid: 27475895
Wang, J. et al. A human bi-specific antibody against Zika virus with high therapeutic potential. Cell 171, 229–241 (2017).
pubmed: 5673489
pmcid: 5673489
Robbiani, D. F. et al. Recurrent potent human neutralizing antibodies to Zika virus in Brazil and Mexico. Cell 169, 597–609 (2017).
pubmed: 5492969
pmcid: 5492969
Chappel, M. S. et al. Identification of the Fc gamma receptor class I binding site in human IgG through the use of recombinant IgG1/IgG2 hybrid and point-mutated antibodies. Proc. Natl Acad. Sci. USA 88, 9036–9040 (1991).
pubmed: 1833770
pmcid: 1833770
Davidson, E. & Doranz, B. J. A high-throughput shotgun mutagenesis approach to mapping B-cell antibody epitopes. Immunology 143, 13–20 (2014).
pubmed: 24854488
pmcid: 24854488
Sirohi, D. et al. The 3.8 Å resolution cryo-EM structure of Zika virus. Science 352, 467-–4470 (2016).
pubmed: 4845755
pmcid: 4845755
Cockburn, J. J. et al. Structural insights into the neutralization mechanism of a higher primate antibody against dengue virus. EMBO J. 31, 767–779 (2012).
pubmed: 22139356
pmcid: 22139356
Robinson, L. N. et al. Structure-guided design of an anti-dengue antibody directed to a non-immunodominant epitope. Cell 162, 493–504 (2015).
pubmed: 4758460
pmcid: 4758460
Renner, M. et al. Characterization of a potent and highly unusual minimally enhancing antibody directed against dengue virus. Nat. Immunol. 19, 1248–1256 (2018).
Men, R. et al. Identification of chimpanzee Fab fragments by repertoire cloning and production of a full-length humanized immunoglobulin G1 antibody that is highly efficient for neutralization of dengue type 4 virus. J. Virology 78, 4665–4674 (2004).
pubmed: 15078949
pmcid: 15078949
Gentry, M. K., Henchal, E. A., McCown, J. M., Brandt, W. E. & Dalrymple, J. M. Identification of distinct antigenic determinants on dengue-2 virus using monoclonal antibodies. Am. J. Trop. Med. Hyg. 31, 548–555 (1982).
pubmed: 6177259
pmcid: 6177259
Dai, L. et al. Structures of the Zika virus envelope protein and its complex with a flavivirus broadly protective antibody. Cell Host Microbe 19, 696–704 (2016).
pubmed: 27158114
pmcid: 27158114
Lu, X. et al. Double lock of a human neutralizing and protective monoclonal antibody targeting the yellow fever virus envelope. Cell Rep. 26, 438–446 e435 (2019).
pubmed: 30625326
pmcid: 30625326
Rodriguez-Barraquer, I. et al. Impact of preexisting dengue immunity on Zika virus emergence in a dengue endemic region. Science 363, 607–610 (2019).
pubmed: 30733412
pmcid: 30733412
Henchal, E. A., Gentry, M. K., McCown, J. M. & Brandt, W. E. Dengue virus-specific and flavivirus group determinants identified with monoclonal antibodies by indirect immunofluorescence. Am. J. Trop. Med. Hyg. 31, 830–836 (1982).
pubmed: 6285749
pmcid: 6285749
Ye, J., Ma, N., Madden, T. L. & Ostell, J. M. IgBLAST: an immunoglobulin variable domain sequence analysis tool. Nucleic Acids Res. 41, W34–W40 (2013).
pubmed: 23671333
pmcid: 23671333
Dejnirattisai, W. et al. A new class of highly potent, broadly neutralizing antibodies isolated from viremic patients infected with dengue virus. Nat. Immunol. 16, 170–177 (2015).
pubmed: 25501631
pmcid: 25501631
Wang, Q. et al. Molecular determinants of human neutralizing antibodies isolated from a patient infected with Zika virus. Sci. Transl. Med. 8, 369ra179 (2016).
pubmed: 27974667
pmcid: 27974667
Gallichotte, E. N. et al. A new quaternary structure epitope on dengue virus serotype 2 is the target of durable type-specific neutralizing antibodies. mBio 6, e01461–01415 (2015).
pubmed: 26463165
pmcid: 26463165
Sapparapu, G. et al. Neutralizing human antibodies prevent Zika virus replication and fetal disease in mice. Nature 540, 443–447 (2016).
pubmed: 27819683
pmcid: 27819683
Cox, K. S. et al. Rapid isolation of dengue-neutralizing antibodies from single cell-sorted human antigen-specific memory B-cell cultures. MAbs 8, 129–140 (2016).
pubmed: 26491897
pmcid: 26491897
Thomas, S. J. et al. A phase II, randomized, safety and immunogenicity study of a re-derived, live-attenuated dengue virus vaccine in healthy adults. Am. J. Trop. Med. Hyg. 88, 73–88 (2013).
pubmed: 23208878
pmcid: 23208878
Commo, F. & Bot, B.M. nplr: N-parameter logistic regression. Version 0.1-7 https://CRAN.R-project.org/package=nplr (2016).
McCracken, M. K. et al. Impact of prior flavivirus immunity on Zika virus infection in rhesus macaques. PLoS Pathog. 13, e1006487 (2017).
pubmed: 5542404
pmcid: 5542404
Hezareh, M., Hessell, A. J., Jensen, R. C., van de Winkel, J. G. & Parren, P. W. Effector function activities of a panel of mutants of a broadly neutralizing antibody against human immunodeficiency virus type 1. J. Virology 75, 12161–12168 (2001).
pubmed: 11711607
pmcid: 11711607
Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 (1997).
McCoy, A. J. et al. Phaser crystallographic software. J. Appl. Crystallogr. 40, 658–674 (2007).
pubmed: 2483472
pmcid: 2483472
Strong, M. et al. Toward the structural genomics of complexes: crystal structure of a PE/PPE protein complex from Mycobacterium tuberculosis. Proc. Natl Acad. Sci. USA 103, 8060–8065 (2006).
Chen, V. B. et al. MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr. D 66, 12–21 (2010).
Krissinel, E. & Henrick, K. Inference of macromolecular assemblies from crystalline state. J. Mol. Biol. 372, 774–797 (2007).
Klungthong, C. et al. Monitoring and improving the sensitivity of dengue nested RT-PCR used in longitudinal surveillance in Thailand. J. Clin. Virol. 63, 25–31 (2015).
pubmed: 25600599
pmcid: 25600599