The insect antimicrobial peptide cecropin A disrupts uropathogenic Escherichia coli biofilms.


Journal

NPJ biofilms and microbiomes
ISSN: 2055-5008
Titre abrégé: NPJ Biofilms Microbiomes
Pays: United States
ID NLM: 101666944

Informations de publication

Date de publication:
12 02 2020
Historique:
received: 12 09 2019
accepted: 15 01 2020
entrez: 14 2 2020
pubmed: 14 2 2020
medline: 23 3 2021
Statut: epublish

Résumé

Current antibiotics cannot eradicate uropathogenic Escherichia coli (UPEC) biofilms, leading to recurrent urinary tract infections. Here, we show that the insect antimicrobial peptide cecropin A (CecA) can destroy planktonic and sessile biofilm-forming UPEC cells, either alone or when combined with the antibiotic nalidixic acid (NAL), synergistically clearing infection in vivo without off-target cytotoxicity. The multi-target mechanism of action involves outer membrane permeabilization followed by biofilm disruption triggered by the inhibition of efflux pump activity and interactions with extracellular and intracellular nucleic acids. These diverse targets ensure that resistance to the CecA + NAL combination emerges slowly. The antimicrobial mechanisms of CecA, thus, extend beyond pore-forming activity to include an unanticipated biofilm-eradication process, offering an alternative approach to combat antibiotic-resistant UPEC infections.

Identifiants

pubmed: 32051417
doi: 10.1038/s41522-020-0116-3
pii: 10.1038/s41522-020-0116-3
pmc: PMC7016129
doi:

Substances chimiques

Antimicrobial Cationic Peptides 0
Escherichia coli Proteins 0
Pore Forming Cytotoxic Proteins 0
Nalidixic Acid 3B91HWA56M
cecropin A 80451-04-3

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

6

Commentaires et corrections

Type : CommentIn

Références

Flores-Mireles, A. L., Walker, J. N., Caparon, M. & Hultgren, S. J. Urinary tract infections: epidemiology, mechanisms of infection and treatment options. Nat. Rev. Microbiol. 13, 269–284 (2015).
doi: 10.1038/nrmicro3432
Toval, F. et al. Characterization of Escherichia coli isolates from hospital inpatients or outpatients with urinary tract infection. J. Clin. Microbiol. 52, 407–418 (2014).
doi: 10.1128/JCM.02069-13
Koo, H., Howlin, R. P., Stoodley, P. & Hall-Stoodley, L. Targeting microbial biofilms: current and prospective therapeutic strategies. Nat. Rev. Microbiol. 15, 740–755 (2017).
doi: 10.1038/nrmicro.2017.99
Yu, G., Baeder, D. Y., Regoes, R. R. & Rolff, J. Predicting drug resistance evolution: insights from antimicrobial peptides and antibiotics. Proc. Biol. Sci. 285, pii: 20172687 (2018).
Zheng, Z. et al. Synergistic efficacy of Aedes aegypti antimicrobial peptide cecropin A2 and tetracycline against Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 61, pii: e00686-17 (2017).
doi: 10.1128/AAC.00686-17
Heitmueller, M., Billion, A., Dobrindt, U., Vilcinskas, A. & Mukherjee, K. Epigenetic mechanisms regulate innate immunity against uropathogenic and commensal-like Escherichia coli in the surrogate insect model Galleria mellonella. Infect. Immun. 85, pii: e00336-17 (2017).
doi: 10.1128/IAI.00336-17
Shin, Y. P. et al. Antimicrobial activity of a halocidin-derived peptide resistant to attacks by proteases. Antimicrob. Agents Chemother. 54, 2855–2866 (2010).
doi: 10.1128/AAC.01790-09
Yan, J. et al. Two hits are better than one: membrane-active and DNA binding-related double-action mechanism of NK-18, a novel antimicrobial peptide derived from mammalian NK-lysin. Antimicrob. Agents Chemother. 57, 220–228 (2013).
doi: 10.1128/AAC.01619-12
Marr, A. K., Gooderham, W. J. & Hancock, R. E. Antibacterial peptides for therapeutic use: obstacles and realistic outlook. Curr. Opin. Pharmacol. 6, 468–472 (2006).
doi: 10.1016/j.coph.2006.04.006
Hall, C. W. & Mah, T. F. Molecular mechanisms of biofilm-based antibiotic resistance and tolerance in pathogenic bacteria. Fems. Microbiol. Rev. 41, 276–301 (2017).
doi: 10.1093/femsre/fux010
Devaraj, A., Justice, S. S., Bakaletz, L. O. & Goodman, S. D. DNABII proteins play a central role in UPEC biofilm structure. Mol. Microbiol. 96, 1119–1135 (2015).
doi: 10.1111/mmi.12994
Coldham, N. G., Webber, M., Woodward, M. J. & Piddock, L. J. A 96-well plate fluorescence assay for assessment of cellular permeability and active efflux in Salmonella enterica serovar typhimurium and Escherichia coli. J. Antimicrob. Chemother. 65, 1655–1663 (2010).
doi: 10.1093/jac/dkq169
Alav, I., Sutton, J. M. & Rahman, K. M. Role of bacterial efflux pumps in biofilm formation. J. Antimicrob. Chemother. 73, 2003–2020 (2018).
doi: 10.1093/jac/dky042
Blair, J. M. & Piddock, L. J. How to measure export via bacterial multidrug resistance efflux pumps. MBio 7, pii: e00840-16 (2016).
doi: 10.1128/mBio.00840-16
Nakao, R., Myint, S. L., Wai, S. N. & Uhlin, B. E. Enhanced biofilm formation and membrane vesicle release by Escherichia coli expressing a commonly occurring plasmid gene, kil. Front. Microbiol. 9, 2605 (2018).
doi: 10.3389/fmicb.2018.02605
Ogata, Y. et al. DnaK heat shock protein of Escherichia coli maintains the negative supercoiling of DNA against thermal stress. J. Biol. Chem. 271, 29407–29414 (1996).
doi: 10.1074/jbc.271.46.29407
Orhan, G., Bayram, A., Zer, Y. & Balci, I. Synergy tests by E test and checkerboard methods of antimicrobial combinations against Brucella melitensis. J. Clin. Microbiol. 43, 140–143 (2005).
doi: 10.1128/JCM.43.1.140-143.2005
Johnson, M. D. et al. Combination antifungal therapy. Antimicrob. Agents Chemother. 48, 693–715 (2004).
doi: 10.1128/AAC.48.3.693-715.2004
Tonk, M. et al. Antiplasmodial activity of tick defensins in a mouse model of malaria. Ticks Tick. Borne Dis. 9, 844–849 (2018).
doi: 10.1016/j.ttbdis.2018.03.011
Luna-Ramirez, K., Tonk, M., Rahnamaeian, M. & Vilcinskas, A. Bioactivity of natural and engineered antimicrobial peptides from venom of the scorpions Urodacus yaschenkoi and U. manicatus. Toxins 9, pii: E22 (2017).
doi: 10.3390/toxins9010022
Mukherjee, K., Hain, T., Fischer, R., Chakraborty, T. & Vilcinskas, A. Brain infection and activation of neuronal repair mechanisms by the human pathogen Listeria monocytogenes in the lepidopteran model host Galleria mellonella. Virulence 4, 324–332 (2013).
doi: 10.4161/viru.23629
Zdybicka-Barabas, A. et al. Synergistic action of Galleria mellonella apolipophorin III and lysozyme against Gram-negative bacteria. Biochim. Biophys. Acta 1828, 1449–1456 (2013).
doi: 10.1016/j.bbamem.2013.02.004
Horcas, I. et al. WSxM: a software for scanning probe microscopy and a tool for nanotechnology. Rev. Sci. Instrum. 78, 013705 (2007).
doi: 10.1063/1.2432410
Glaeser, S. P. et al. Non‐pathogenic Rhizobium radiobacter F4 exhibits plant beneficial activity independent of its host Piriformospora indica. ISME J. 10, 871–884 (2016).
doi: 10.1038/ismej.2015.163
Iyer, R., Ferrari, A., Rijnbrand, R. & Erwin, A. L. A fluorescent microplate assay quantifies bacterial efflux and demonstrates two distinct compound binding sites in AcrB. Antimicrob. Agents Chemother. 59, 2388–2397 (2015).
doi: 10.1128/AAC.05112-14

Auteurs

Miriam Kalsy (M)

Fraunhofer Institute for Molecular Biology and Applied Ecology, Department of Bioresources, 35394, Giessen, Germany.

Miray Tonk (M)

Institute for Insect Biotechnology, Justus Liebig University, 35392, Giessen, Germany.
LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), 60325, Frankfurt, Germany.

Martin Hardt (M)

Imaging Unit, Biomedical Research Center Seltersberg (BFS), Justus Liebig University, 35392, Giessen, Germany.

Ulrich Dobrindt (U)

Institute of Hygiene, University of Muenster, 48149, Muenster, Germany.

Agnieszka Zdybicka-Barabas (A)

Department of Immunobiology, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Lublin, Poland.

Malgorzata Cytrynska (M)

Department of Immunobiology, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Lublin, Poland.

Andreas Vilcinskas (A)

Fraunhofer Institute for Molecular Biology and Applied Ecology, Department of Bioresources, 35394, Giessen, Germany. Andreas.Vilcinskas@agrar.uni-giessen.de.
Institute for Insect Biotechnology, Justus Liebig University, 35392, Giessen, Germany. Andreas.Vilcinskas@agrar.uni-giessen.de.
LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), 60325, Frankfurt, Germany. Andreas.Vilcinskas@agrar.uni-giessen.de.

Krishnendu Mukherjee (K)

Fraunhofer Institute for Molecular Biology and Applied Ecology, Department of Bioresources, 35394, Giessen, Germany. Krishnendu.Mukherjee@ukmuenster.de.
Institute of Hygiene, University of Muenster, 48149, Muenster, Germany. Krishnendu.Mukherjee@ukmuenster.de.

Articles similaires

Robotic Surgical Procedures Animals Humans Telemedicine Models, Animal

Odour generalisation and detection dog training.

Lyn Caldicott, Thomas W Pike, Helen E Zulch et al.
1.00
Animals Odorants Dogs Generalization, Psychological Smell
Animals TOR Serine-Threonine Kinases Colorectal Neoplasms Colitis Mice
Animals Tail Swine Behavior, Animal Animal Husbandry

Classifications MeSH