Chronic circadian misalignment accelerates immune senescence and abbreviates lifespan in mice.
Animals
B-Lymphocytes
/ immunology
Cellular Senescence
/ genetics
Circadian Rhythm
/ genetics
Disease Models, Animal
Humans
Hyaluronan Receptors
/ genetics
Inflammation
/ immunology
Jet Lag Syndrome
/ immunology
Longevity
/ genetics
Mice
Programmed Cell Death 1 Receptor
/ genetics
Sequence Analysis, RNA
T-Lymphocytes
/ immunology
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
13 02 2020
13 02 2020
Historique:
received:
29
10
2019
accepted:
30
01
2020
entrez:
15
2
2020
pubmed:
15
2
2020
medline:
13
11
2020
Statut:
epublish
Résumé
Modern society characterized by a 24/7 lifestyle leads to misalignment between environmental cycles and endogenous circadian rhythms. Persisting circadian misalignment leads to deleterious effects on health and healthspan. However, the underlying mechanism remains not fully understood. Here, we subjected adult, wild-type mice to distinct chronic jet-lag paradigms, which showed that long-term circadian misalignment induced significant early mortality. Non-biased RNA sequencing analysis using liver and kidney showed marked activation of gene regulatory pathways associated with the immune system and immune disease in both organs. In accordance, we observed enhanced steatohepatitis with infiltration of inflammatory cells. The investigation of senescence-associated immune cell subsets from the spleens and mesenteric lymph nodes revealed an increase in PD-1
Identifiants
pubmed: 32054990
doi: 10.1038/s41598-020-59541-y
pii: 10.1038/s41598-020-59541-y
pmc: PMC7018741
doi:
Substances chimiques
Hyaluronan Receptors
0
Pdcd1 protein, mouse
0
Programmed Cell Death 1 Receptor
0
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
2569Références
Takahashi, J. S. Transcriptional architecture of the mammalian circadian clock. Nat. Rev. Genet. 18, 164–179, https://doi.org/10.1038/nrg.2016.150 (2017).
doi: 10.1038/nrg.2016.150
pubmed: 27990019
Pilorz, V., Helfrich-Forster, C. & Oster, H. The role of the circadian clock system in physiology. Pflugers Arch. 470, 227–239, https://doi.org/10.1007/s00424-017-2103-y (2018).
doi: 10.1007/s00424-017-2103-y
pubmed: 29302752
Grimaldi, D., Carter, J. R., Van Cauter, E. & Leproult, R. Adverse Impact of Sleep Restriction and Circadian Misalignment on Autonomic Function in Healthy Young Adults. Hypertension 68, 243–250, https://doi.org/10.1161/HYPERTENSIONAHA.115.06847 (2016).
doi: 10.1161/HYPERTENSIONAHA.115.06847
pubmed: 27271308
pmcid: 4902172
Kubo, T. et al. An industry-based cohort study of the association between weight gain and hypertension risk among rotating shift workers. J. Occup. Environ. Med. 55, 1041–1045, https://doi.org/10.1097/JOM.0b013e31829731fd (2013).
doi: 10.1097/JOM.0b013e31829731fd
pubmed: 23969502
Leproult, R., Holmback, U. & Van Cauter, E. Circadian misalignment augments markers of insulin resistance and inflammation, independently of sleep loss. Diabetes 63, 1860–1869, https://doi.org/10.2337/db13-1546 (2014).
doi: 10.2337/db13-1546
pubmed: 24458353
pmcid: 4030107
Megdal, S. P., Kroenke, C. H., Laden, F., Pukkala, E. & Schernhammer, E. S. Night work and breast cancer risk: a systematic review and meta-analysis. Eur. J. Cancer 41, 2023–2032, https://doi.org/10.1016/j.ejca.2005.05.010 (2005).
doi: 10.1016/j.ejca.2005.05.010
pubmed: 16084719
Vetter, C. et al. Association Between Rotating Night Shift Work and Risk of Coronary Heart Disease Among Women. JAMA 315, 1726–1734, https://doi.org/10.1001/jama.2016.4454 (2016).
doi: 10.1001/jama.2016.4454
pubmed: 27115377
pmcid: 5102147
Knutsson, A. Health disorders of shift workers. Occup. Med. (Lond.) 53, 103–108 (2003).
doi: 10.1093/occmed/kqg048
Davidson, A. J. et al. Chronic jet-lag increases mortality in aged mice. Curr. Biol. 16, R914–916, https://doi.org/10.1016/j.cub.2006.09.058 (2006).
doi: 10.1016/j.cub.2006.09.058
pubmed: 17084685
pmcid: 1635966
Golombek, D. A. et al. The times they’re a-changing: effects of circadian desynchronization on physiology and disease. J. Physiol. Paris 107, 310–322, https://doi.org/10.1016/j.jphysparis.2013.03.007 (2013).
doi: 10.1016/j.jphysparis.2013.03.007
pubmed: 23545147
Balsalobre, A., Damiola, F. & Schibler, U. A serum shock induces circadian gene expression in mammalian tissue culture cells. Cell 93, 929–937 (1998).
doi: 10.1016/S0092-8674(00)81199-X
Yagita, K., Tamanini, F., van Der Horst, G. T. & Okamura, H. Molecular mechanisms of the biological clock in cultured fibroblasts. Science 292, 278–281, https://doi.org/10.1126/science.1059542 (2001).
doi: 10.1126/science.1059542
pubmed: 11303101
Yamazaki, S. et al. Resetting central and peripheral circadian oscillators in transgenic rats. Science 288, 682–685 (2000).
doi: 10.1126/science.288.5466.682
Yoo, S. H. et al. PERIOD2::LUCIFERASE real-time reporting of circadian dynamics reveals persistent circadian oscillations in mouse peripheral tissues. Proc. Natl. Acad. Sci. USA 101, 5339–5346, https://doi.org/10.1073/pnas.0308709101 (2004).
doi: 10.1073/pnas.0308709101
pubmed: 14963227
Hastings, M. H. Central clocking. Trends Neurosci. 20, 459–464 (1997).
doi: 10.1016/S0166-2236(97)01087-4
Pittendrigh, C. S. Circadian rhythms and the circadian organization of living systems. Cold Spring Harb. Symp. Quant. Biol. 25, 159–184 (1960).
doi: 10.1101/SQB.1960.025.01.015
Berson, D. M., Dunn, F. A. & Takao, M. Phototransduction by retinal ganglion cells that set the circadian clock. Science 295, 1070–1073, https://doi.org/10.1126/science.1067262 (2002).
doi: 10.1126/science.1067262
pubmed: 11834835
Gooley, J. J., Lu, J., Fischer, D. & Saper, C. B. A broad role for melanopsin in nonvisual photoreception. J. Neurosci. 23, 7093–7106 (2003).
doi: 10.1523/JNEUROSCI.23-18-07093.2003
Hattar, S., Liao, H. W., Takao, M., Berson, D. M. & Yau, K. W. Melanopsin-containing retinal ganglion cells: architecture, projections, and intrinsic photosensitivity. Science 295, 1065–1070, https://doi.org/10.1126/science.1069609 (2002).
doi: 10.1126/science.1069609
pubmed: 11834834
pmcid: 2885915
de la Iglesia, H. O., Cambras, T., Schwartz, W. J. & Diez-Noguera, A. Forced desynchronization of dual circadian oscillators within the rat suprachiasmatic nucleus. Curr. Biol. 14, 796–800, https://doi.org/10.1016/j.cub.2004.04.034 (2004).
doi: 10.1016/j.cub.2004.04.034
pubmed: 15120072
Reddy, A. B., Field, M. D., Maywood, E. S. & Hastings, M. H. Differential resynchronisation of circadian clock gene expression within the suprachiasmatic nuclei of mice subjected to experimental jet lag. J. Neurosci. 22, 7326–7330 (2002).
doi: 10.1523/JNEUROSCI.22-17-07326.2002
Minami, Y. et al. Chronic inflammation in mice exposed to the long-term un-entrainable light–dark cycles. Sleep Biol. Rhythms 16, 63–68, https://doi.org/10.1007/s41105-017-0127-5 (2018).
doi: 10.1007/s41105-017-0127-5
Nakamura, T. J. et al. Age-Related Changes in the Circadian System Unmasked by Constant Conditions. eNeuro 2, https://doi.org/10.1523/ENEURO.0064-15.2015 (2015).
doi: 10.1523/ENEURO.0064-15.2015
Nakamura, T. J. et al. Age-related decline in circadian output. J. Neurosci. 31, 10201–10205, https://doi.org/10.1523/JNEUROSCI.0451-11.2011 (2011).
doi: 10.1523/JNEUROSCI.0451-11.2011
pubmed: 21752996
pmcid: 3155746
Nagano, M. et al. An abrupt shift in the day/night cycle causes desynchrony in the mammalian circadian center. J. Neurosci. 23, 6141–6151 (2003).
doi: 10.1523/JNEUROSCI.23-14-06141.2003
Bass, J. & Takahashi, J. S. Circadian integration of metabolism and energetics. Science 330, 1349–1354, https://doi.org/10.1126/science.1195027 (2010).
doi: 10.1126/science.1195027
pubmed: 21127246
pmcid: 3756146
Vetter, C. Circadian disruption: What do we actually mean? Eur. J. Neurosci, https://doi.org/10.1111/ejn.14255 (2018).
Fulop, T. et al. Immunosenescence and Inflamm-Aging As Two Sides of the Same Coin: Friends or Foes? Front. Immunol. 8, 1960, https://doi.org/10.3389/fimmu.2017.01960 (2018).
doi: 10.3389/fimmu.2017.01960
pubmed: 29375577
pmcid: 5767595
Shimatani, K., Nakashima, Y., Hattori, M., Hamazaki, Y. & Minato, N. PD-1+ memory phenotype CD4+ T cells expressing C/EBPalpha underlie T cell immunodepression in senescence and leukemia. Proc. Natl. Acad. Sci. USA 106, 15807–15812, https://doi.org/10.1073/pnas.0908805106 (2009).
doi: 10.1073/pnas.0908805106
pubmed: 19805226
Tahir, S. et al. A CD153+CD4+ T follicular cell population with cell-senescence features plays a crucial role in lupus pathogenesis via osteopontin production. J. Immunol. 194, 5725–5735, https://doi.org/10.4049/jimmunol.1500319 (2015).
doi: 10.4049/jimmunol.1500319
pubmed: 25972477
Lages, C. S. et al. Functional regulatory T cells accumulate in aged hosts and promote chronic infectious disease reactivation. J. Immunol. 181, 1835–1848 (2008).
doi: 10.4049/jimmunol.181.3.1835
Sakamoto, K. et al. Osteopontin in Spontaneous Germinal Centers Inhibits Apoptotic Cell Engulfment and Promotes Anti-Nuclear Antibody Production in Lupus-Prone Mice. J. Immunol. 197, 2177–2186, https://doi.org/10.4049/jimmunol.1600987 (2016).
doi: 10.4049/jimmunol.1600987
pubmed: 27534552
Leung, S. et al. The cytokine milieu in the interplay of pathogenic Th1/Th17 cells and regulatory T cells in autoimmune disease. Cell. Mol. Immunol. 7, 182–189, https://doi.org/10.1038/cmi.2010.22 (2010).
doi: 10.1038/cmi.2010.22
pubmed: 20383174
pmcid: 4002916
Curtis, A. M., Bellet, M. M., Sassone-Corsi, P. & O’Neill, L. A. Circadian clock proteins and immunity. Immunity 40, 178–186, https://doi.org/10.1016/j.immuni.2014.02.002 (2014).
doi: 10.1016/j.immuni.2014.02.002
pubmed: 24560196
Castanon-Cervantes, O. et al. Dysregulation of inflammatory responses by chronic circadian disruption. J. Immunol. 185, 5796–5805, https://doi.org/10.4049/jimmunol.1001026 (2010).
doi: 10.4049/jimmunol.1001026
pubmed: 20944004
pmcid: 2974025
Della Bella, S. et al. Peripheral blood dendritic cells and monocytes are differently regulated in the elderly. Clin. Immunol. 122, 220–228, https://doi.org/10.1016/j.clim.2006.09.012 (2007).
doi: 10.1016/j.clim.2006.09.012
pubmed: 17101294
Shaw, A. C., Joshi, S., Greenwood, H., Panda, A. & Lord, J. M. Aging of the innate immune system. Curr. Opin. Immunol. 22, 507–513, https://doi.org/10.1016/j.coi.2010.05.003 (2010).
doi: 10.1016/j.coi.2010.05.003
pubmed: 20667703
pmcid: 4034446
Flurkey, K., Currer, J. M. & Harrison, D. E. In The Mouse in Biomedical Research (ed J.G. Fox, Barthold, S.W., Davisson, M.T., Newcomer, C.E., Quimby, F.W., Smith, A.L.) 637-672 (Academic Press, 2007).
Koronowski, K. B. et al. Defining the Independence of the Liver Circadian Clock. Cell 177, 1448–1462 e1414, https://doi.org/10.1016/j.cell.2019.04.025 (2019).
doi: 10.1016/j.cell.2019.04.025
pubmed: 31150621
pmcid: 6813833
Welz, P. S. et al. BMAL1-Driven Tissue Clocks Respond Independently to Light to Maintain Homeostasis. Cell 177, 1436–1447 e1412, https://doi.org/10.1016/j.cell.2019.05.009 (2019).
doi: 10.1016/j.cell.2019.05.009
pubmed: 31150620
Yu, X. et al. TH17 cell differentiation is regulated by the circadian clock. Science 342, 727–730, https://doi.org/10.1126/science.1243884 (2013).
doi: 10.1126/science.1243884
pubmed: 4165400
pmcid: 4165400
Sichien, D. et al. IRF8 Transcription Factor Controls Survival and Function of Terminally Differentiated Conventional and Plasmacytoid Dendritic Cells, Respectively. Immunity 45, 626–640, https://doi.org/10.1016/j.immuni.2016.08.013 (2016).
doi: 10.1016/j.immuni.2016.08.013
pubmed: 27637148
Kondratov, R. V., Kondratova, A. A., Gorbacheva, V. Y., Vykhovanets, O. V. & Antoch, M. P. Early aging and age-related pathologies in mice deficient in BMAL1, the core componentof the circadian clock. Genes Dev. 20, 1868–1873, https://doi.org/10.1101/gad.1432206 (2006).
doi: 10.1101/gad.1432206
pubmed: 16847346
pmcid: 1522083
Nohara, K. et al. Nobiletin fortifies mitochondrial respiration in skeletal muscle to promote healthy aging against metabolic challenge. Nat. Commun. 10, 3923, https://doi.org/10.1038/s41467-019-11926-y (2019).
doi: 10.1038/s41467-019-11926-y
pubmed: 31462679
pmcid: 6713763
Logan, R. W. & Sarkar, D. K. Circadian nature of immune function. Mol. Cell. Endocrinol. 349, 82–90, https://doi.org/10.1016/j.mce.2011.06.039 (2012).
doi: 10.1016/j.mce.2011.06.039
pubmed: 21784128
Shimba, A. et al. Glucocorticoids Drive Diurnal Oscillations in T Cell Distribution and Responses by Inducing Interleukin-7 Receptor and CXCR4. Immunity 48, 286–298 e286, https://doi.org/10.1016/j.immuni.2018.01.004 (2018).
doi: 10.1016/j.immuni.2018.01.004
Lee, S., Donehower, L. A., Herron, A. J., Moore, D. D. & Fu, L. Disrupting circadian homeostasis of sympathetic signaling promotes tumor development in mice. PLoS One 5, e10995, https://doi.org/10.1371/journal.pone.0010995 (2010).
doi: 10.1371/journal.pone.0010995
pubmed: 20539819
pmcid: 2881876
Kettner, N. M. et al. Circadian Homeostasis of Liver Metabolism Suppresses Hepatocarcinogenesis. Cancer Cell 30, 909–924, https://doi.org/10.1016/j.ccell.2016.10.007 (2016).
doi: 10.1016/j.ccell.2016.10.007
pubmed: 27889186
pmcid: 5695235
Scheiermann, C. et al. Adrenergic nerves govern circadian leukocyte recruitment to tissues. Immunity 37, 290–301, https://doi.org/10.1016/j.immuni.2012.05.021 (2012).
doi: 10.1016/j.immuni.2012.05.021
pubmed: 3428436
pmcid: 3428436
Suzuki, K., Hayano, Y., Nakai, A., Furuta, F. & Noda, M. Adrenergic control of the adaptive immune response by diurnal lymphocyte recirculation through lymph nodes. J. Exp. Med. 213, 2567–2574, https://doi.org/10.1084/jem.20160723 (2016).
doi: 10.1084/jem.20160723
pubmed: 27799619
pmcid: 5110024
Ayroldi, E., Cannarile, L., Adorisio, S., Delfino, D. V. & Riccardi, C. Role of Endogenous Glucocorticoids in Cancer in the Elderly. Int. J. Mol. Sci. 19, https://doi.org/10.3390/ijms19123774 (2018).
doi: 10.3390/ijms19123774
Thaiss, C. A. et al. Transkingdom control of microbiota diurnal oscillations promotes metabolic homeostasis. Cell 159, 514–529, https://doi.org/10.1016/j.cell.2014.09.048 (2014).
doi: 10.1016/j.cell.2014.09.048
pubmed: 25417104
Nagpal, R. et al. Gut microbiome and aging: Physiological and mechanistic insights. Nutr. Healthy Aging. 4, 267–285, https://doi.org/10.3233/NHA-170030 (2018).
doi: 10.3233/NHA-170030
pubmed: 29951588
pmcid: 6004897
McHugh, D. & Gil, J. Senescence and aging: Causes, consequences, and therapeutic avenues. J. Cell Biol. 217, 65–77, https://doi.org/10.1083/jcb.201708092 (2018).
doi: 10.1083/jcb.201708092
pubmed: 29114066
pmcid: 5748990
Fulop, T., Dupuis, G., Witkowski, J. M. & Larbi, A. The Role of Immunosenescence in the Development of Age-Related Diseases. Rev. Invest. Clin. 68, 84–91 (2016).
pubmed: 27103044
Tsuchiya, Y. et al. Disruption of MeCP2 attenuates circadian rhythm in CRISPR/Cas9-based Rett syndrome model mouse. Genes Cells 20, 992–1005, https://doi.org/10.1111/gtc.12305 (2015).
doi: 10.1111/gtc.12305
pubmed: 26456390
Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120, https://doi.org/10.1093/bioinformatics/btu170 (2014).
doi: 10.1093/bioinformatics/btu170
pubmed: 4103590
pmcid: 4103590
Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21, https://doi.org/10.1093/bioinformatics/bts635 (2013).
doi: 10.1093/bioinformatics/bts635
pubmed: 23104886
Umemura, Y. et al. Involvement of posttranscriptional regulation of Clock in the emergence of circadian clock oscillation during mouse development. Proc. Natl. Acad. Sci. USA 114, E7479–E7488, https://doi.org/10.1073/pnas.1703170114 (2017).
doi: 10.1073/pnas.1703170114
pubmed: 28827343
Li, H. et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078–2079, https://doi.org/10.1093/bioinformatics/btp352 (2009).
doi: 10.1093/bioinformatics/btp352
pubmed: 19505943
pmcid: 19505943
Heinz, S. et al. Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. Mol. Cell 38, 576–589, https://doi.org/10.1016/j.molcel.2010.05.004 (2010).
doi: 10.1016/j.molcel.2010.05.004
pubmed: 2898526
pmcid: 2898526
Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550, https://doi.org/10.1186/s13059-014-0550-8 (2014).
doi: 10.1186/s13059-014-0550-8
pubmed: 4302049
pmcid: 4302049
Kanehisa, M., Sato, Y., Kawashima, M., Furumichi, M. & Tanabe, M. KEGG as a reference resource for gene and protein annotation. Nucleic Acids Res. 44, D457–462, https://doi.org/10.1093/nar/gkv1070 (2016).
doi: 10.1093/nar/gkv1070
pubmed: 26476454
Luo, W., Friedman, M. S., Shedden, K., Hankenson, K. D. & Woolf, P. J. GAGE: generally applicable gene set enrichment for pathway analysis. BMC Bioinformatics 10, 161, https://doi.org/10.1186/1471-2105-10-161 (2009).
doi: 10.1186/1471-2105-10-161
pubmed: 19473525
pmcid: 2696452
Uchiyama, T., Irie, M., Mori, H., Kurokawa, K. & Yamada, T. FuncTree: Functional Analysis and Visualization for Large-Scale Omics Data. PLoS One 10, e0126967, https://doi.org/10.1371/journal.pone.0126967 (2015).
doi: 10.1371/journal.pone.0126967
pubmed: 25974630
pmcid: 4431737
Kawakami, E., Nakaoka, S., Ohta, T. & Kitano, H. Weighted enrichment method for prediction of transcription regulators from transcriptome and global chromatin immunoprecipitation data. Nucleic Acids Res. 44, 5010–5021, https://doi.org/10.1093/nar/gkw355 (2016).
doi: 10.1093/nar/gkw355
pubmed: 27131787
pmcid: 4914117