Stem rust resistance in wheat is suppressed by a subunit of the mediator complex.


Journal

Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555

Informations de publication

Date de publication:
28 02 2020
Historique:
received: 31 12 2019
accepted: 11 02 2020
entrez: 1 3 2020
pubmed: 1 3 2020
medline: 27 5 2020
Statut: epublish

Résumé

Stem rust is an important disease of wheat that can be controlled using resistance genes. The gene SuSr-D1 identified in cultivar 'Canthatch' suppresses stem rust resistance. SuSr-D1 mutants are resistant to several races of stem rust that are virulent on wild-type plants. Here we identify SuSr-D1 by sequencing flow-sorted chromosomes, mutagenesis, and map-based cloning. The gene encodes Med15, a subunit of the Mediator Complex, a conserved protein complex in eukaryotes that regulates expression of protein-coding genes. Nonsense mutations in Med15b.D result in expression of stem rust resistance. Time-course RNAseq analysis show a significant reduction or complete loss of differential gene expression at 24 h post inoculation in med15b.D mutants, suggesting that transcriptional reprogramming at this time point is not required for immunity to stem rust. Suppression is a common phenomenon and this study provides novel insight into suppression of rust resistance in wheat.

Identifiants

pubmed: 32111840
doi: 10.1038/s41467-020-14937-2
pii: 10.1038/s41467-020-14937-2
pmc: PMC7048732
doi:

Substances chimiques

Mediator Complex 0

Types de publication

Journal Article Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, Non-P.H.S.

Langues

eng

Sous-ensembles de citation

IM

Pagination

1123

Subventions

Organisme : National Science Foundation (NSF)
ID : IOS-0965429
Pays : International
Organisme : Biotechnology and Biological Sciences Research Council
ID : BB/P012574/1
Pays : United Kingdom
Organisme : Biotechnology and Biological Sciences Research Council
ID : BB/P016855/1
Pays : United Kingdom

Références

Shewry, P. R. Wheat. J. Exp. Biol. 60, 1537–1553 (2009).
Bilgic, H., Hakki, E. E., Pandey, A., Khan, M. K. & Akkaya, M. S. Ancient DNA from 8400 year-old Çatalhöyük wheat: implications for the origin of Neolithic agriculture. PLoS One 11, e0151974 (2016).
pubmed: 26998604 pmcid: 4801371 doi: 10.1371/journal.pone.0151974
Huang, S. et al. Genes encoding plastid acetyl-CoA carboxylase and 3-phosphoglycerate kinase of the Triticum/Aegilops complex and the evolutionary history of polyploid wheat. Proc. Natl Acad. Sci. USA 99, 8133–8138 (2002).
pubmed: 12060759 doi: 10.1073/pnas.072223799 pmcid: 12060759
Marcussen, T. et al. Ancient hybridizations among the ancestral genomes of bread wheat. Science 345, 1250092 (2014).
pubmed: 25035499 doi: 10.1126/science.1250092 pmcid: 25035499
Chalupska, D. et al. Acc homoeoloci and the evolution of wheat genomes. Proc. Natl Acad. Sci. USA 105, 9691–9696 (2008).
pubmed: 18599450 doi: 10.1073/pnas.0803981105 pmcid: 18599450
Peturson, B. Wheat rust epidemics in western Canada in 1953, 1954 and 1955. Can. J. Plant Sci. 38, 16–28 (1958).
doi: 10.4141/cjps58-004
Olivera, P. et al. Phenotypic and genotypic characterization of race TKTTF of Puccinia graminis f. sp. tritici that caused a wheat stem rust epidemic in Southern Ethiopia in 2013-14. Phytopathology 105, 917–928 (2015).
pubmed: 25775107 doi: 10.1094/PHYTO-11-14-0302-FI pmcid: 25775107
Olivera, P. D. et al. Races of Puccinia graminis f. sp. tritici with combined virulence to Sr13 and Sr9e in a field stem rust screening nursery in Ethiopia. Plant Dis. 96, 623–628 (2012).
pubmed: 30727519 doi: 10.1094/PDIS-09-11-0793 pmcid: 30727519
Pretorius, Z. A., Singh, R. P., Wagoire, W. W. & Payne, T. S. Detection of virulence to wheat stem rust resistance gene Sr31 in Puccinia graminis f. sp. tritici in Uganda. Plant Dis. 84, 203 (2000).
pubmed: 30841334 doi: 10.1094/PDIS.2000.84.2.203B pmcid: 30841334
Stakman E. C., Stewart D. M. & Loegering W. Q. Identification of Physiologic Races of Puccinia graminis var. tritici. (USDA Agricultural Research Service, Washington, 1962).
Bai, D. & Knott, D. R. Suppression of rust resistance in bread wheat (Triticum aestivum L.) by D-genome chromosomes. Genome 35, 276–282 (1992).
doi: 10.1139/g92-043
Liu, W. et al. Development and characterization of a compensating wheat-Thinopyrum intermedium Robertsonian translocation with Sr44 resistance to stem rust (Ug99). Theor. Appl. Genet. 126, 1167–1177 (2013).
pubmed: 23358862 doi: 10.1007/s00122-013-2044-6 pmcid: 23358862
The, T. T. & Baker, E. P. Basic studies relating to the transference of genetic characters from Triticum monococcum L. to hexaploid wheat. Aust. J. Biol. Sci. 28, 189–199 (1975).
doi: 10.1071/BI9750189
Innes, R. L. & Kerber, E. R. Resistance to wheat leaf rust and stem rust in Triticum tauschii and inheritance in hexaploid wheat of resistance transferred from T. tauschii. Genome 37, 813–822 (1994).
pubmed: 18470124 doi: 10.1139/g94-116 pmcid: 18470124
Nelson, J. C., Singh, R. P., Autrique, J. E. & Sorrells, M. E. Mapping genes conferring and suppressing leaf rust resistance in wheat. Crop Sci. 37, 1928–1935 (1997).
doi: 10.2135/cropsci1997.0011183X003700060043x
Kema, G. H. J., Lange, W. & van Silfhout, C. H. Differential suppression of stripe rust resistance in synthetic wheat hexaploids derived from Triticum turgidum subsp. dicoccoides and Aegilops squarrosa. Phytopathology 85, 508–512 (1995).
doi: 10.1094/Phyto-85-425
Hanušová, R., Hsam, S. L. K., Bartoš, P. & Zeller, F. J. Suppression of powdery mildew resistance gene Pm8 in Triticum aestivum L. (common wheat) cultivars carrying wheat-rye translocations T1BL.1RS. Heredity 77, 383–387 (1996).
doi: 10.1038/hdy.1996.157
Ren, S. X., McIntosh, R. A. & Lu, Z. J. Genetic suppression of the cereal rye-derived gene Pm8 in wheat. Euphytica 93, 353–360 (1997).
doi: 10.1023/A:1002923030266
Assefa, S. & Fehrmann, H. Resistance to wheat leaf rust in Aegilops tauschii Coss. and inheritance of resistance in hexaploid wheat. Genet. Resour. Crop. Evol. 47, 135–140 (2000).
doi: 10.1023/A:1008770226330
Assefa, S. & Fehrmann, H. Evaluation of Aegilops tauschii Coss. for resistance to wheat stem rust and inheritance of resistance genes in hexaploid wheat. Genet. Resour. Crop Evol. 51, 663–669 (2004).
doi: 10.1023/B:GRES.0000024657.20898.ed
Chen, W., Liu, T. & Gao, L. Suppression of stripe rust and leaf rust resistances in interspecific crosses of wheat. Euphytica 192, 339–346 (2013).
doi: 10.1007/s10681-012-0854-2
Wulff, B. B. & Moscou, M. J. Strategies for transferring resistance into wheat: from wide crosses to GM cassettes. Front. Plant Sci. 5, 692 (2014).
pubmed: 25538723 pmcid: 4255625 doi: 10.3389/fpls.2014.00692
Kerber, E. R. & Green, G. J. Suppression of stem rust resistance in the hexaploid wheat cv. Canthatch by chromosome 7DL. Can. J. Bot. 58, 1347–1350 (1980).
doi: 10.1139/b80-166
Kerber, E. R. Wheat: reconstitution of the tetraploid component (AABB) of hexaploids. Science 143, 253–255 (1964).
pubmed: 17753152 doi: 10.1126/science.143.3603.253 pmcid: 17753152
Kerber, E. R. Stem-rust resistance in ‘Canthatch’ hexaploid wheat induced by a nonsuppressor mutation on chromosome 7DL. Genome 34, 935–939 (1991).
doi: 10.1139/g91-144
Williams, N. D., Miller, J. D. & Klindworth, D. L. Induced mutations of a genetic suppressor of resistance to wheat stem rust. Crop Sci. 32, 612–616 (1992).
doi: 10.2135/cropsci1992.0011183X003200030008x
The International Wheat Genome Sequencing Consortium. A chromosome-based draft sequence of the hexaploid bread wheat (Triticum aestivum) genome. Science 345, 1251788 (2014).
doi: 10.1126/science.1251788
Sánchez-Martín, J. et al. Rapid gene isolation in barley and wheat by mutant chromosome sequencing. Genome Biol. 17, 221 (2016).
pubmed: 27795210 pmcid: 5087116 doi: 10.1186/s13059-016-1082-1
Allen, A. M. et al. Transcript-specific, single-nucleotide polymorphism discovery and linkage analysis in hexaploid bread wheat (Triticum aestivum L.). Plant Biotechnol. J. 9, 1086–1099 (2011).
pubmed: 21627760 doi: 10.1111/j.1467-7652.2011.00628.x pmcid: 21627760
International Wheat Genome Sequencing C. et al. Shifting the limits in wheat research and breeding using a fully annotated reference genome. Science 361, eaar7191 (2018).
doi: 10.1126/science.aar7191
Mathur, S., Vyas, S., Kapoor, S. & Tyagi, A. K. The Mediator complex in plants: structure, phylogeny, and expression profiling of representative genes in a dicot (Arabidopsis) and a monocot (rice) during reproduction and abiotic stress. Plant Physiol. 157, 1609–1627 (2011).
pubmed: 22021418 pmcid: 3327187 doi: 10.1104/pp.111.188300
Canet, J. V., Dobón, A. & Tornero, P. Non-recognition-of-BTH4, an Arabidopsis mediator subunit homolog, is necessary for development and response to salicylic acid. Plant Cell 24, 4220–4235 (2012).
pubmed: 23064321 pmcid: 3517246 doi: 10.1105/tpc.112.103028
Hurni, S. et al. The powdery mildew resistance gene Pm8 derived from rye is suppressed by its wheat ortholog. Plant J. 79, 904–913 (2014).
pubmed: 24942074 doi: 10.1111/tpj.12593 pmcid: 24942074
Flanagan, P. M. et al. Resolution of factors required for the initiation of transcription by yeast RNA polymerase II. J. Biol. Chem. 265, 11105–11107 (1990).
pubmed: 2193032 pmcid: 2193032
Kim, Y. J., Bjorklund, S., Li, Y., Sayre, M. H. & Kornberg, R. D. A multiprotein mediator of transcriptional activation and its interaction with the C-terminal repeat domain of RNA polymerase II. Cell 77, 599–608 (1994).
pubmed: 8187178 doi: 10.1016/0092-8674(94)90221-6 pmcid: 8187178
Backstrom, S., Elfving, N., Nilsson, R., Wingsle, G. & Bjorklund, S. Purification of a plant mediator from Arabidopsis thaliana identifies PFT1 as the Med25 subunit. Mol. Cell 26, 717–729 (2007).
pubmed: 17560376 doi: 10.1016/j.molcel.2007.05.007 pmcid: 17560376
Bourbon, H. M. Comparative genomics supports a deep evolutionary origin for the large, four-module transcriptional mediator complex. Nucleic Acids Res. 36, 3993–4008 (2008).
pubmed: 18515835 pmcid: 2475620 doi: 10.1093/nar/gkn349
Bjorklund, S. & Gustafsson, C. M. The yeast mediator complex and its regulation. Trends Biochem. Sci. 30, 240–244 (2005).
pubmed: 15896741 doi: 10.1016/j.tibs.2005.03.008 pmcid: 15896741
Conaway, R. C., Sato, S., Tomomori-Sato, C., Yao, T. & Conaway, J. W. The mammalian mediator complex and its role in transcriptional regulation. Trends Biochem. Sci. 30, 250–255 (2005).
pubmed: 15896743 doi: 10.1016/j.tibs.2005.03.002
Kornberg, R. D. Mediator and the mechanism of transcriptional activation. Trends Biochem. Sci. 30, 235–239 (2005).
pubmed: 15896740 doi: 10.1016/j.tibs.2005.03.011 pmcid: 15896740
An, C. & Mou, Z. The function of the mediator complex in plant immunity. Plant Signal. Behav. 8, e23182 (2013).
pubmed: 23299323 pmcid: 3676488 doi: 10.4161/psb.23182
Caillaud, M. C. et al. A downy mildew effector attenuates salicylic acid-triggered immunity in Arabidopsis by interacting with the host mediator complex. PLoS Biol. 11, e1001732 (2013).
pubmed: 24339748 pmcid: 3858237 doi: 10.1371/journal.pbio.1001732
Zhang, X., Yao, J., Zhang, Y., Sun, Y. & Mou, Z. The Arabidopsis Mediator complex subunits MED14/SWP and MED16/SFR6/IEN1 differentially regulate defense gene expression in plant immune responses. Plant J. 75, 484–497 (2013).
pubmed: 23607369 doi: 10.1111/tpj.12216 pmcid: 23607369
Wang, C., Du, X. & Mou, Z. The mediator complex subunits MED14, MED15, and MED16 are involved in defense signaling crosstalk in Arabidopsis. Front. Plant Sci. 7, 1947 (2016).
pubmed: 28066497 pmcid: 5177743
Wathugala, D. L. et al. The mediator subunit SFR6/MED16 controls defence gene expression mediated by salicylic acid and jasmonate responsive pathways. New Phytol. 195, 217–230 (2012).
pubmed: 22494141 doi: 10.1111/j.1469-8137.2012.04138.x pmcid: 22494141
Zhang, X., Wang, C., Zhang, Y., Sun, Y. & Mou, Z. The Arabidopsis mediator complex subunit16 positively regulates salicylate-mediated systemic acquired resistance and jasmonate/ethylene-induced defense pathways. Plant Cell 24, 4294–4309 (2012).
pubmed: 23064320 pmcid: 3517251 doi: 10.1105/tpc.112.103317
Balamotis, M. A. et al. Complexity in transcription control at the activation domain-mediator interface. Sci. Signal. 2, ra20 (2009).
pubmed: 19417216 pmcid: 2774526 doi: 10.1126/scisignal.1164302
Dixon, J. R. et al. Topological domains in mammalian genomes identified by analysis of chromatin interactions. Nature 485, 376–380 (2012).
pubmed: 22495300 pmcid: 22495300 doi: 10.1038/nature11082
Allen, B. L. & Taatjes, D. J. The mediator complex: a central integrator of transcription. Nat. Rev. Mol. Cell Biol. 16, 155–166 (2015).
pubmed: 25693131 pmcid: 4963239 doi: 10.1038/nrm3951
Thomas, J., Chen, Q. & Howes, N. Chromosome doubling of haploids of common wheat with caffeine. Genome 40, 552–558 (1997).
pubmed: 18464846 doi: 10.1139/g97-072 pmcid: 18464846
Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B 57, 289–300 (1995).
Jin, Y. Detection of virulence to resistance gene Sr24 within race TTKS of Puccinia graminis f. sp. tritici. Plant Dis. 92, 923–926 (2008).
pubmed: 30769714 doi: 10.1094/PDIS-92-6-0923 pmcid: 30769714
Roelfs, A. P. & Martens, J. W. An internaltional system of nomenclature of Puccinia graminis f. sp. tritici. Phytopathology 78, 526–533 (1988).
doi: 10.1094/Phyto-78-526
Jin, Y. et al. Characterization of seedling infection types and adult plant infection responses of monogenic Sr gene lines to race TTKS of Puccinia graminis f. sp. tritici. Plant Dis. 91, 1096–1099 (2007).
pubmed: 30780647 doi: 10.1094/PDIS-91-9-1096 pmcid: 30780647
McIntosh, R. A., Wellings, C. R. & Park, R. F. Wheat Rusts—An Atlas of Resistance Genes. (CSIRO Publications, 1995).
Newcomb, M. et al. Kenyan isolates of Puccinia graminis f. sp. tritici from 2008 to 2014: Virulence to SrTmp in the Ug99 race group and implications for breeding programs. Phytopathology 106, 729–736 (2016).
pubmed: 27019064 doi: 10.1094/PHYTO-12-15-0337-R pmcid: 27019064
Hiebert, C. W. et al. Genetics and mapping of seedling resistance to Ug99 stem rust in Canadian wheat cultivars ‘Peace’ and ‘AC Cadillac’. Theor. Appl. Genet. 122, 143–149 (2011).
pubmed: 20725713 doi: 10.1007/s00122-010-1430-6 pmcid: 20725713
Peterson, R. F., Campbell, A. B. & Hannah, A. E. A diagrammatic scale for estimating rust intensity on leaves and stems of cereals. Can. J. Res. 26, 496–500 (1948).
doi: 10.1139/cjr48c-033
Vrána, J. et al. Flow sorting of mitotic chromosomes in common wheat (Triticum aestivum L.). Genetics 156, 2033–2041 (2000).
pubmed: 11102393 pmcid: 1461381
Giorgi, D. et al. FISHIS: fluorescence in situ hybridization in suspension and chromosome flow sorting made easy. PLoS One 8, e57994 (2013).
pubmed: 23469124 pmcid: 3585268 doi: 10.1371/journal.pone.0057994
Kubaláková, M. et al. Analysis and sorting of rye (Secale cereale L.) chromosomes using flow cytometry. Genome 46, 893–905 (2003).
pubmed: 14608406 doi: 10.1139/g03-054 pmcid: 14608406
Šimková, H. et al. Coupling amplified DNA from flow-sorted chromosomes to high-density SNP mapping in barley. BMC Genomics 9, 294 (2008).
pubmed: 18565235 pmcid: 2453526 doi: 10.1186/1471-2164-9-294
Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).
pubmed: 4103590 pmcid: 4103590 doi: 10.1093/bioinformatics/btu170
Hernandez, D., Francois, P., Farinelli, L., Osteras, M. & Schrenzel, J. De novo bacterial genome sequencing: millions of very short reads assembled on a desktop computer. Genome Res. 18, 802–809 (2008).
pubmed: 18332092 pmcid: 2336802 doi: 10.1101/gr.072033.107
Hernandez, D. et al. De novo finished 2.8 Mbp Staphylococcus aureus genome assembly from 100 bp short and long range paired-end reads. Bioinformatics 30, 40–49 (2014).
pubmed: 24130309 doi: 10.1093/bioinformatics/btt590 pmcid: 24130309
Smit A. F. A., Hubley R. & Green P. RepeatMasker Open-4.0. http://repeatmasker.org (2013–2015).
Koboldt, D. C. et al. VarScan 2: somatic mutation and copy number alteration discovery in cancer by exome sequencing. Genome Res. 22, 568–576 (2012).
pubmed: 22300766 pmcid: 3290792 doi: 10.1101/gr.129684.111
Kim, D. et al. TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol. 14, R36 (2013).
pubmed: 23618408 pmcid: 4053844 doi: 10.1186/gb-2013-14-4-r36
Trapnell, C. et al. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat. Biotechnol. 28, 511–515 (2010).
pubmed: 20436464 pmcid: 3146043 doi: 10.1038/nbt.1621
Haas, B. J. et al. De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis. Nat. Protoc. 8, 1494–1512 (2013).
pubmed: 23845962 doi: 10.1038/nprot.2013.084 pmcid: 23845962
Lorieux, M. MapDisto: fast and efficient computation of genetic linkage maps. Mol. Breed. 30, 1231–1235 (2012).
doi: 10.1007/s11032-012-9706-y
Kosambi, D. D. The estimation of map distances from recombination values. Ann. Eugen. 12, 172–175 (1943).
doi: 10.1111/j.1469-1809.1943.tb02321.x
Wang, S. et al. Characterization of polyploid wheat genomic diversity using a high-density 90,000 single nucleotide polymorphism array. Plant Biotechnol. J. 12, 787–796 (2014).
pubmed: 24646323 pmcid: 4265271 doi: 10.1111/pbi.12183
Akhunov, E. D. et al. Nucleotide diversity maps reveal variation in diversity among wheat genomes and chromosomes. BMC Genomics 11, 702 (2010).
pubmed: 21156062 pmcid: 3022916 doi: 10.1186/1471-2164-11-702
Finn, R. D. et al. InterPro in 2017-beyond protein family and domain annotations. Nucleic Acids Res. 45, D190–D199 (2017).
pubmed: 27899635 doi: 10.1093/nar/gkw1107 pmcid: 27899635
Jones, P. et al. InterProScan 5: genome-scale protein function classification. Bioinformatics 30, 1236–1240 (2014).
pubmed: 3998142 pmcid: 3998142 doi: 10.1093/bioinformatics/btu031
Kelley, L. A., Mezulis, S., Yates, C. M., Wass, M. N. & Sternberg, M. J. The Phyre2 web portal for protein modeling, prediction and analysis. Nat. Protoc. 10, 845–858 (2015).
pubmed: 25950237 pmcid: 25950237 doi: 10.1038/nprot.2015.053
Lupas, A., Van Dyke, M. & Stock, J. Predicting coiled coils from protein sequences. Science 252, 1162–1164 (1991).
pubmed: 2031185 doi: 10.1126/science.252.5009.1162 pmcid: 2031185
Delorenzi, M. & Speed, T. An HMM model for coiled-coil domains and a comparison with PSSM-based predictions. Bioinformatics 18, 617–625 (2002).
pubmed: 12016059 doi: 10.1093/bioinformatics/18.4.617 pmcid: 12016059
Gruber, M., Soding, J. & Lupas, A. N. REPPER-repeats and their periodicities in fibrous proteins. Nucleic Acids Res. 33, W239–W243 (2005).
pubmed: 15980460 pmcid: 1160166 doi: 10.1093/nar/gki405
Mascher, M. et al. A chromosome conformation capture ordered sequence of the barley genome. Nature 544, 427–433 (2017).
pubmed: 28447635 doi: 10.1038/nature22043 pmcid: 28447635
Grønvold, L., Schubert, M., Sandve, S. R., Fjellheim, S. & Hvidsten, T. R. Comparative transcriptomics provides insight into the evolution of cold response in Pooideae. bioRxiv (2017).
Liu, J., Zhou, Y., Luo, C., Xiang, Y. & An, L. De novo transcriptome sequencing of desert herbaceous Achnatherum splendens (Achnatherum) seedlings and identification of salt tolerance genes. Genes 7, E12 (2016).
pubmed: 27023614 doi: 10.3390/genes7040012 pmcid: 27023614
Grabherr, M. G. et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat. Biotechnol. 29, 644–652 (2011).
pubmed: 3571712 pmcid: 3571712 doi: 10.1038/nbt.1883
Löytynoja, A. Phylogeny-aware alignment with PRANK. Methods Mol. Biol. 1079, 155–170 (2014).
pubmed: 24170401 doi: 10.1007/978-1-62703-646-7_10 pmcid: 24170401
Stamatakis, A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30, 1312–1313 (2014).
pubmed: 3998144 pmcid: 3998144 doi: 10.1093/bioinformatics/btu033
Meharg, C. et al. Trait-directed de novo population transcriptome dissects genetic regulation of a balanced polymorphism in phosphorus nutrition/arsenate tolerance in a wild grass, Holcus lanatus. New Phytol. 201, 144–154 (2014).
pubmed: 24102375 doi: 10.1111/nph.12491 pmcid: 24102375
Yang, Z. PAML 4: phylogenetic analysis by maximum likelihood. Mol. Biol. Evol. 24, 1586–1591 (2007).
doi: 10.1093/molbev/msm088
Dawson, A. M. et al. Isolation and fine mapping of Rps6: an intermediate host resistance gene in barley to wheat stripe rust. Theor. Appl. Genet. 129, 831–843 (2016).
pubmed: 26754419 pmcid: 4799244 doi: 10.1007/s00122-015-2659-x
Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).
pubmed: 25516281 pmcid: 25516281 doi: 10.1186/s13059-014-0550-8
Huber, W. et al. Orchestrating high-throughput genomic analysis with bioconductor. Nat. Methods 12, 115–121 (2015).
pubmed: 25633503 pmcid: 4509590 doi: 10.1038/nmeth.3252
Storey, J. D. & Tibshirani, R. Statistical significance for genomewide studies. Proc. Natl Acad. Sci. USA 100, 9440–9445 (2003).
pubmed: 12883005 doi: 10.1073/pnas.1530509100 pmcid: 12883005
Parker, D. et al. Phosphorylation of CREB at Ser-133 induces complex formation with CREB-binding protein via a direct mechanism. Mol. Cell Biol. 16, 694–703 (1996).
pubmed: 8552098 pmcid: 231049 doi: 10.1128/MCB.16.2.694

Auteurs

Colin W Hiebert (CW)

Agriculture and Agri-Food Canada, Morden Research and Development Centre, 101 Route 100, Morden, MB, R6M 1Y5, Canada. Colin.Hiebert@AGR.GC.CA.

Matthew J Moscou (MJ)

The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, NR4 7UK, UK. matthew.moscou@tsl.ac.uk.

Tim Hewitt (T)

Plant Breeding Institute Cobbitty, University of Sydney, Private Bag 4011, Narellan, NSW, 2567, Australia.
CSIRO Agriculture & Food, GPO Box 1700, Canberra, ACT, 2601, Australia.

Burkhard Steuernagel (B)

John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK.

Inma Hernández-Pinzón (I)

The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, NR4 7UK, UK.

Phon Green (P)

The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, NR4 7UK, UK.

Vincent Pujol (V)

Research School of Biology, The Australian National University, Acton, ACT, 2601, Australia.

Peng Zhang (P)

Plant Breeding Institute Cobbitty, University of Sydney, Private Bag 4011, Narellan, NSW, 2567, Australia.

Matthew N Rouse (MN)

USDA-ARS, Cereal Disease Laboratory, University of Minnesota, St. Paul, MN, 55108, USA.

Yue Jin (Y)

USDA-ARS, Cereal Disease Laboratory, University of Minnesota, St. Paul, MN, 55108, USA.

Robert A McIntosh (RA)

Plant Breeding Institute Cobbitty, University of Sydney, Private Bag 4011, Narellan, NSW, 2567, Australia.

Narayana Upadhyaya (N)

CSIRO Agriculture & Food, GPO Box 1700, Canberra, ACT, 2601, Australia.

Jianping Zhang (J)

CSIRO Agriculture & Food, GPO Box 1700, Canberra, ACT, 2601, Australia.

Sridhar Bhavani (S)

CIMMYT, ICRAF House, United Nations Avenue, Gigiri, Village Market, Nairobi, 00621, Kenya.

Jan Vrána (J)

Institute of Experimental Botany, Czech Academy of Sciences, Centre of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, 779 00, Olomouc, Czech Republic.

Miroslava Karafiátová (M)

Institute of Experimental Botany, Czech Academy of Sciences, Centre of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, 779 00, Olomouc, Czech Republic.

Li Huang (L)

Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT, 59717, USA.

Tom Fetch (T)

Agriculture and Agri-Food Canada, Morden Research and Development Centre, 101 Route 100, Morden, MB, R6M 1Y5, Canada.

Jaroslav Doležel (J)

Institute of Experimental Botany, Czech Academy of Sciences, Centre of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, 779 00, Olomouc, Czech Republic.

Brande B H Wulff (BBH)

John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK.

Evans Lagudah (E)

CSIRO Agriculture & Food, GPO Box 1700, Canberra, ACT, 2601, Australia. Evans.Lagudah@csiro.au.

Wolfgang Spielmeyer (W)

CSIRO Agriculture & Food, GPO Box 1700, Canberra, ACT, 2601, Australia. Wolfgang.Spielmeyer@csiro.au.

Articles similaires

T-Lymphocytes, Regulatory Lung Neoplasms Proto-Oncogene Proteins p21(ras) Animals Humans

Pathogenic mitochondrial DNA mutations inhibit melanoma metastasis.

Spencer D Shelton, Sara House, Luiza Martins Nascentes Melo et al.
1.00
DNA, Mitochondrial Humans Melanoma Mutation Neoplasm Metastasis
Amaryllidaceae Alkaloids Lycoris NADPH-Ferrihemoprotein Reductase Gene Expression Regulation, Plant Plant Proteins

Prevalence and implications of fragile X premutation screening in Thailand.

Areerat Hnoonual, Sunita Kaewfai, Chanin Limwongse et al.
1.00
Humans Fragile X Mental Retardation Protein Thailand Male Female

Classifications MeSH