Stem rust resistance in wheat is suppressed by a subunit of the mediator complex.
Basidiomycota
/ pathogenicity
Chromosome Mapping
Chromosomes, Plant
/ genetics
Disease Resistance
/ genetics
Gene Duplication
Gene Expression
Gene Expression Regulation, Plant
Genes, Plant
/ genetics
Mediator Complex
/ genetics
Mutation
Phenotype
Plant Diseases
/ genetics
Plant Immunity
/ genetics
Poaceae
/ classification
Triticum
/ genetics
Journal
Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555
Informations de publication
Date de publication:
28 02 2020
28 02 2020
Historique:
received:
31
12
2019
accepted:
11
02
2020
entrez:
1
3
2020
pubmed:
1
3
2020
medline:
27
5
2020
Statut:
epublish
Résumé
Stem rust is an important disease of wheat that can be controlled using resistance genes. The gene SuSr-D1 identified in cultivar 'Canthatch' suppresses stem rust resistance. SuSr-D1 mutants are resistant to several races of stem rust that are virulent on wild-type plants. Here we identify SuSr-D1 by sequencing flow-sorted chromosomes, mutagenesis, and map-based cloning. The gene encodes Med15, a subunit of the Mediator Complex, a conserved protein complex in eukaryotes that regulates expression of protein-coding genes. Nonsense mutations in Med15b.D result in expression of stem rust resistance. Time-course RNAseq analysis show a significant reduction or complete loss of differential gene expression at 24 h post inoculation in med15b.D mutants, suggesting that transcriptional reprogramming at this time point is not required for immunity to stem rust. Suppression is a common phenomenon and this study provides novel insight into suppression of rust resistance in wheat.
Identifiants
pubmed: 32111840
doi: 10.1038/s41467-020-14937-2
pii: 10.1038/s41467-020-14937-2
pmc: PMC7048732
doi:
Substances chimiques
Mediator Complex
0
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, Non-P.H.S.
Langues
eng
Sous-ensembles de citation
IM
Pagination
1123Subventions
Organisme : National Science Foundation (NSF)
ID : IOS-0965429
Pays : International
Organisme : Biotechnology and Biological Sciences Research Council
ID : BB/P012574/1
Pays : United Kingdom
Organisme : Biotechnology and Biological Sciences Research Council
ID : BB/P016855/1
Pays : United Kingdom
Références
Shewry, P. R. Wheat. J. Exp. Biol. 60, 1537–1553 (2009).
Bilgic, H., Hakki, E. E., Pandey, A., Khan, M. K. & Akkaya, M. S. Ancient DNA from 8400 year-old Çatalhöyük wheat: implications for the origin of Neolithic agriculture. PLoS One 11, e0151974 (2016).
pubmed: 26998604
pmcid: 4801371
doi: 10.1371/journal.pone.0151974
Huang, S. et al. Genes encoding plastid acetyl-CoA carboxylase and 3-phosphoglycerate kinase of the Triticum/Aegilops complex and the evolutionary history of polyploid wheat. Proc. Natl Acad. Sci. USA 99, 8133–8138 (2002).
pubmed: 12060759
doi: 10.1073/pnas.072223799
pmcid: 12060759
Marcussen, T. et al. Ancient hybridizations among the ancestral genomes of bread wheat. Science 345, 1250092 (2014).
pubmed: 25035499
doi: 10.1126/science.1250092
pmcid: 25035499
Chalupska, D. et al. Acc homoeoloci and the evolution of wheat genomes. Proc. Natl Acad. Sci. USA 105, 9691–9696 (2008).
pubmed: 18599450
doi: 10.1073/pnas.0803981105
pmcid: 18599450
Peturson, B. Wheat rust epidemics in western Canada in 1953, 1954 and 1955. Can. J. Plant Sci. 38, 16–28 (1958).
doi: 10.4141/cjps58-004
Olivera, P. et al. Phenotypic and genotypic characterization of race TKTTF of Puccinia graminis f. sp. tritici that caused a wheat stem rust epidemic in Southern Ethiopia in 2013-14. Phytopathology 105, 917–928 (2015).
pubmed: 25775107
doi: 10.1094/PHYTO-11-14-0302-FI
pmcid: 25775107
Olivera, P. D. et al. Races of Puccinia graminis f. sp. tritici with combined virulence to Sr13 and Sr9e in a field stem rust screening nursery in Ethiopia. Plant Dis. 96, 623–628 (2012).
pubmed: 30727519
doi: 10.1094/PDIS-09-11-0793
pmcid: 30727519
Pretorius, Z. A., Singh, R. P., Wagoire, W. W. & Payne, T. S. Detection of virulence to wheat stem rust resistance gene Sr31 in Puccinia graminis f. sp. tritici in Uganda. Plant Dis. 84, 203 (2000).
pubmed: 30841334
doi: 10.1094/PDIS.2000.84.2.203B
pmcid: 30841334
Stakman E. C., Stewart D. M. & Loegering W. Q. Identification of Physiologic Races of Puccinia graminis var. tritici. (USDA Agricultural Research Service, Washington, 1962).
Bai, D. & Knott, D. R. Suppression of rust resistance in bread wheat (Triticum aestivum L.) by D-genome chromosomes. Genome 35, 276–282 (1992).
doi: 10.1139/g92-043
Liu, W. et al. Development and characterization of a compensating wheat-Thinopyrum intermedium Robertsonian translocation with Sr44 resistance to stem rust (Ug99). Theor. Appl. Genet. 126, 1167–1177 (2013).
pubmed: 23358862
doi: 10.1007/s00122-013-2044-6
pmcid: 23358862
The, T. T. & Baker, E. P. Basic studies relating to the transference of genetic characters from Triticum monococcum L. to hexaploid wheat. Aust. J. Biol. Sci. 28, 189–199 (1975).
doi: 10.1071/BI9750189
Innes, R. L. & Kerber, E. R. Resistance to wheat leaf rust and stem rust in Triticum tauschii and inheritance in hexaploid wheat of resistance transferred from T. tauschii. Genome 37, 813–822 (1994).
pubmed: 18470124
doi: 10.1139/g94-116
pmcid: 18470124
Nelson, J. C., Singh, R. P., Autrique, J. E. & Sorrells, M. E. Mapping genes conferring and suppressing leaf rust resistance in wheat. Crop Sci. 37, 1928–1935 (1997).
doi: 10.2135/cropsci1997.0011183X003700060043x
Kema, G. H. J., Lange, W. & van Silfhout, C. H. Differential suppression of stripe rust resistance in synthetic wheat hexaploids derived from Triticum turgidum subsp. dicoccoides and Aegilops squarrosa. Phytopathology 85, 508–512 (1995).
doi: 10.1094/Phyto-85-425
Hanušová, R., Hsam, S. L. K., Bartoš, P. & Zeller, F. J. Suppression of powdery mildew resistance gene Pm8 in Triticum aestivum L. (common wheat) cultivars carrying wheat-rye translocations T1BL.1RS. Heredity 77, 383–387 (1996).
doi: 10.1038/hdy.1996.157
Ren, S. X., McIntosh, R. A. & Lu, Z. J. Genetic suppression of the cereal rye-derived gene Pm8 in wheat. Euphytica 93, 353–360 (1997).
doi: 10.1023/A:1002923030266
Assefa, S. & Fehrmann, H. Resistance to wheat leaf rust in Aegilops tauschii Coss. and inheritance of resistance in hexaploid wheat. Genet. Resour. Crop. Evol. 47, 135–140 (2000).
doi: 10.1023/A:1008770226330
Assefa, S. & Fehrmann, H. Evaluation of Aegilops tauschii Coss. for resistance to wheat stem rust and inheritance of resistance genes in hexaploid wheat. Genet. Resour. Crop Evol. 51, 663–669 (2004).
doi: 10.1023/B:GRES.0000024657.20898.ed
Chen, W., Liu, T. & Gao, L. Suppression of stripe rust and leaf rust resistances in interspecific crosses of wheat. Euphytica 192, 339–346 (2013).
doi: 10.1007/s10681-012-0854-2
Wulff, B. B. & Moscou, M. J. Strategies for transferring resistance into wheat: from wide crosses to GM cassettes. Front. Plant Sci. 5, 692 (2014).
pubmed: 25538723
pmcid: 4255625
doi: 10.3389/fpls.2014.00692
Kerber, E. R. & Green, G. J. Suppression of stem rust resistance in the hexaploid wheat cv. Canthatch by chromosome 7DL. Can. J. Bot. 58, 1347–1350 (1980).
doi: 10.1139/b80-166
Kerber, E. R. Wheat: reconstitution of the tetraploid component (AABB) of hexaploids. Science 143, 253–255 (1964).
pubmed: 17753152
doi: 10.1126/science.143.3603.253
pmcid: 17753152
Kerber, E. R. Stem-rust resistance in ‘Canthatch’ hexaploid wheat induced by a nonsuppressor mutation on chromosome 7DL. Genome 34, 935–939 (1991).
doi: 10.1139/g91-144
Williams, N. D., Miller, J. D. & Klindworth, D. L. Induced mutations of a genetic suppressor of resistance to wheat stem rust. Crop Sci. 32, 612–616 (1992).
doi: 10.2135/cropsci1992.0011183X003200030008x
The International Wheat Genome Sequencing Consortium. A chromosome-based draft sequence of the hexaploid bread wheat (Triticum aestivum) genome. Science 345, 1251788 (2014).
doi: 10.1126/science.1251788
Sánchez-Martín, J. et al. Rapid gene isolation in barley and wheat by mutant chromosome sequencing. Genome Biol. 17, 221 (2016).
pubmed: 27795210
pmcid: 5087116
doi: 10.1186/s13059-016-1082-1
Allen, A. M. et al. Transcript-specific, single-nucleotide polymorphism discovery and linkage analysis in hexaploid bread wheat (Triticum aestivum L.). Plant Biotechnol. J. 9, 1086–1099 (2011).
pubmed: 21627760
doi: 10.1111/j.1467-7652.2011.00628.x
pmcid: 21627760
International Wheat Genome Sequencing C. et al. Shifting the limits in wheat research and breeding using a fully annotated reference genome. Science 361, eaar7191 (2018).
doi: 10.1126/science.aar7191
Mathur, S., Vyas, S., Kapoor, S. & Tyagi, A. K. The Mediator complex in plants: structure, phylogeny, and expression profiling of representative genes in a dicot (Arabidopsis) and a monocot (rice) during reproduction and abiotic stress. Plant Physiol. 157, 1609–1627 (2011).
pubmed: 22021418
pmcid: 3327187
doi: 10.1104/pp.111.188300
Canet, J. V., Dobón, A. & Tornero, P. Non-recognition-of-BTH4, an Arabidopsis mediator subunit homolog, is necessary for development and response to salicylic acid. Plant Cell 24, 4220–4235 (2012).
pubmed: 23064321
pmcid: 3517246
doi: 10.1105/tpc.112.103028
Hurni, S. et al. The powdery mildew resistance gene Pm8 derived from rye is suppressed by its wheat ortholog. Plant J. 79, 904–913 (2014).
pubmed: 24942074
doi: 10.1111/tpj.12593
pmcid: 24942074
Flanagan, P. M. et al. Resolution of factors required for the initiation of transcription by yeast RNA polymerase II. J. Biol. Chem. 265, 11105–11107 (1990).
pubmed: 2193032
pmcid: 2193032
Kim, Y. J., Bjorklund, S., Li, Y., Sayre, M. H. & Kornberg, R. D. A multiprotein mediator of transcriptional activation and its interaction with the C-terminal repeat domain of RNA polymerase II. Cell 77, 599–608 (1994).
pubmed: 8187178
doi: 10.1016/0092-8674(94)90221-6
pmcid: 8187178
Backstrom, S., Elfving, N., Nilsson, R., Wingsle, G. & Bjorklund, S. Purification of a plant mediator from Arabidopsis thaliana identifies PFT1 as the Med25 subunit. Mol. Cell 26, 717–729 (2007).
pubmed: 17560376
doi: 10.1016/j.molcel.2007.05.007
pmcid: 17560376
Bourbon, H. M. Comparative genomics supports a deep evolutionary origin for the large, four-module transcriptional mediator complex. Nucleic Acids Res. 36, 3993–4008 (2008).
pubmed: 18515835
pmcid: 2475620
doi: 10.1093/nar/gkn349
Bjorklund, S. & Gustafsson, C. M. The yeast mediator complex and its regulation. Trends Biochem. Sci. 30, 240–244 (2005).
pubmed: 15896741
doi: 10.1016/j.tibs.2005.03.008
pmcid: 15896741
Conaway, R. C., Sato, S., Tomomori-Sato, C., Yao, T. & Conaway, J. W. The mammalian mediator complex and its role in transcriptional regulation. Trends Biochem. Sci. 30, 250–255 (2005).
pubmed: 15896743
doi: 10.1016/j.tibs.2005.03.002
Kornberg, R. D. Mediator and the mechanism of transcriptional activation. Trends Biochem. Sci. 30, 235–239 (2005).
pubmed: 15896740
doi: 10.1016/j.tibs.2005.03.011
pmcid: 15896740
An, C. & Mou, Z. The function of the mediator complex in plant immunity. Plant Signal. Behav. 8, e23182 (2013).
pubmed: 23299323
pmcid: 3676488
doi: 10.4161/psb.23182
Caillaud, M. C. et al. A downy mildew effector attenuates salicylic acid-triggered immunity in Arabidopsis by interacting with the host mediator complex. PLoS Biol. 11, e1001732 (2013).
pubmed: 24339748
pmcid: 3858237
doi: 10.1371/journal.pbio.1001732
Zhang, X., Yao, J., Zhang, Y., Sun, Y. & Mou, Z. The Arabidopsis Mediator complex subunits MED14/SWP and MED16/SFR6/IEN1 differentially regulate defense gene expression in plant immune responses. Plant J. 75, 484–497 (2013).
pubmed: 23607369
doi: 10.1111/tpj.12216
pmcid: 23607369
Wang, C., Du, X. & Mou, Z. The mediator complex subunits MED14, MED15, and MED16 are involved in defense signaling crosstalk in Arabidopsis. Front. Plant Sci. 7, 1947 (2016).
pubmed: 28066497
pmcid: 5177743
Wathugala, D. L. et al. The mediator subunit SFR6/MED16 controls defence gene expression mediated by salicylic acid and jasmonate responsive pathways. New Phytol. 195, 217–230 (2012).
pubmed: 22494141
doi: 10.1111/j.1469-8137.2012.04138.x
pmcid: 22494141
Zhang, X., Wang, C., Zhang, Y., Sun, Y. & Mou, Z. The Arabidopsis mediator complex subunit16 positively regulates salicylate-mediated systemic acquired resistance and jasmonate/ethylene-induced defense pathways. Plant Cell 24, 4294–4309 (2012).
pubmed: 23064320
pmcid: 3517251
doi: 10.1105/tpc.112.103317
Balamotis, M. A. et al. Complexity in transcription control at the activation domain-mediator interface. Sci. Signal. 2, ra20 (2009).
pubmed: 19417216
pmcid: 2774526
doi: 10.1126/scisignal.1164302
Dixon, J. R. et al. Topological domains in mammalian genomes identified by analysis of chromatin interactions. Nature 485, 376–380 (2012).
pubmed: 22495300
pmcid: 22495300
doi: 10.1038/nature11082
Allen, B. L. & Taatjes, D. J. The mediator complex: a central integrator of transcription. Nat. Rev. Mol. Cell Biol. 16, 155–166 (2015).
pubmed: 25693131
pmcid: 4963239
doi: 10.1038/nrm3951
Thomas, J., Chen, Q. & Howes, N. Chromosome doubling of haploids of common wheat with caffeine. Genome 40, 552–558 (1997).
pubmed: 18464846
doi: 10.1139/g97-072
pmcid: 18464846
Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B 57, 289–300 (1995).
Jin, Y. Detection of virulence to resistance gene Sr24 within race TTKS of Puccinia graminis f. sp. tritici. Plant Dis. 92, 923–926 (2008).
pubmed: 30769714
doi: 10.1094/PDIS-92-6-0923
pmcid: 30769714
Roelfs, A. P. & Martens, J. W. An internaltional system of nomenclature of Puccinia graminis f. sp. tritici. Phytopathology 78, 526–533 (1988).
doi: 10.1094/Phyto-78-526
Jin, Y. et al. Characterization of seedling infection types and adult plant infection responses of monogenic Sr gene lines to race TTKS of Puccinia graminis f. sp. tritici. Plant Dis. 91, 1096–1099 (2007).
pubmed: 30780647
doi: 10.1094/PDIS-91-9-1096
pmcid: 30780647
McIntosh, R. A., Wellings, C. R. & Park, R. F. Wheat Rusts—An Atlas of Resistance Genes. (CSIRO Publications, 1995).
Newcomb, M. et al. Kenyan isolates of Puccinia graminis f. sp. tritici from 2008 to 2014: Virulence to SrTmp in the Ug99 race group and implications for breeding programs. Phytopathology 106, 729–736 (2016).
pubmed: 27019064
doi: 10.1094/PHYTO-12-15-0337-R
pmcid: 27019064
Hiebert, C. W. et al. Genetics and mapping of seedling resistance to Ug99 stem rust in Canadian wheat cultivars ‘Peace’ and ‘AC Cadillac’. Theor. Appl. Genet. 122, 143–149 (2011).
pubmed: 20725713
doi: 10.1007/s00122-010-1430-6
pmcid: 20725713
Peterson, R. F., Campbell, A. B. & Hannah, A. E. A diagrammatic scale for estimating rust intensity on leaves and stems of cereals. Can. J. Res. 26, 496–500 (1948).
doi: 10.1139/cjr48c-033
Vrána, J. et al. Flow sorting of mitotic chromosomes in common wheat (Triticum aestivum L.). Genetics 156, 2033–2041 (2000).
pubmed: 11102393
pmcid: 1461381
Giorgi, D. et al. FISHIS: fluorescence in situ hybridization in suspension and chromosome flow sorting made easy. PLoS One 8, e57994 (2013).
pubmed: 23469124
pmcid: 3585268
doi: 10.1371/journal.pone.0057994
Kubaláková, M. et al. Analysis and sorting of rye (Secale cereale L.) chromosomes using flow cytometry. Genome 46, 893–905 (2003).
pubmed: 14608406
doi: 10.1139/g03-054
pmcid: 14608406
Šimková, H. et al. Coupling amplified DNA from flow-sorted chromosomes to high-density SNP mapping in barley. BMC Genomics 9, 294 (2008).
pubmed: 18565235
pmcid: 2453526
doi: 10.1186/1471-2164-9-294
Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).
pubmed: 4103590
pmcid: 4103590
doi: 10.1093/bioinformatics/btu170
Hernandez, D., Francois, P., Farinelli, L., Osteras, M. & Schrenzel, J. De novo bacterial genome sequencing: millions of very short reads assembled on a desktop computer. Genome Res. 18, 802–809 (2008).
pubmed: 18332092
pmcid: 2336802
doi: 10.1101/gr.072033.107
Hernandez, D. et al. De novo finished 2.8 Mbp Staphylococcus aureus genome assembly from 100 bp short and long range paired-end reads. Bioinformatics 30, 40–49 (2014).
pubmed: 24130309
doi: 10.1093/bioinformatics/btt590
pmcid: 24130309
Smit A. F. A., Hubley R. & Green P. RepeatMasker Open-4.0. http://repeatmasker.org (2013–2015).
Koboldt, D. C. et al. VarScan 2: somatic mutation and copy number alteration discovery in cancer by exome sequencing. Genome Res. 22, 568–576 (2012).
pubmed: 22300766
pmcid: 3290792
doi: 10.1101/gr.129684.111
Kim, D. et al. TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol. 14, R36 (2013).
pubmed: 23618408
pmcid: 4053844
doi: 10.1186/gb-2013-14-4-r36
Trapnell, C. et al. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat. Biotechnol. 28, 511–515 (2010).
pubmed: 20436464
pmcid: 3146043
doi: 10.1038/nbt.1621
Haas, B. J. et al. De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis. Nat. Protoc. 8, 1494–1512 (2013).
pubmed: 23845962
doi: 10.1038/nprot.2013.084
pmcid: 23845962
Lorieux, M. MapDisto: fast and efficient computation of genetic linkage maps. Mol. Breed. 30, 1231–1235 (2012).
doi: 10.1007/s11032-012-9706-y
Kosambi, D. D. The estimation of map distances from recombination values. Ann. Eugen. 12, 172–175 (1943).
doi: 10.1111/j.1469-1809.1943.tb02321.x
Wang, S. et al. Characterization of polyploid wheat genomic diversity using a high-density 90,000 single nucleotide polymorphism array. Plant Biotechnol. J. 12, 787–796 (2014).
pubmed: 24646323
pmcid: 4265271
doi: 10.1111/pbi.12183
Akhunov, E. D. et al. Nucleotide diversity maps reveal variation in diversity among wheat genomes and chromosomes. BMC Genomics 11, 702 (2010).
pubmed: 21156062
pmcid: 3022916
doi: 10.1186/1471-2164-11-702
Finn, R. D. et al. InterPro in 2017-beyond protein family and domain annotations. Nucleic Acids Res. 45, D190–D199 (2017).
pubmed: 27899635
doi: 10.1093/nar/gkw1107
pmcid: 27899635
Jones, P. et al. InterProScan 5: genome-scale protein function classification. Bioinformatics 30, 1236–1240 (2014).
pubmed: 3998142
pmcid: 3998142
doi: 10.1093/bioinformatics/btu031
Kelley, L. A., Mezulis, S., Yates, C. M., Wass, M. N. & Sternberg, M. J. The Phyre2 web portal for protein modeling, prediction and analysis. Nat. Protoc. 10, 845–858 (2015).
pubmed: 25950237
pmcid: 25950237
doi: 10.1038/nprot.2015.053
Lupas, A., Van Dyke, M. & Stock, J. Predicting coiled coils from protein sequences. Science 252, 1162–1164 (1991).
pubmed: 2031185
doi: 10.1126/science.252.5009.1162
pmcid: 2031185
Delorenzi, M. & Speed, T. An HMM model for coiled-coil domains and a comparison with PSSM-based predictions. Bioinformatics 18, 617–625 (2002).
pubmed: 12016059
doi: 10.1093/bioinformatics/18.4.617
pmcid: 12016059
Gruber, M., Soding, J. & Lupas, A. N. REPPER-repeats and their periodicities in fibrous proteins. Nucleic Acids Res. 33, W239–W243 (2005).
pubmed: 15980460
pmcid: 1160166
doi: 10.1093/nar/gki405
Mascher, M. et al. A chromosome conformation capture ordered sequence of the barley genome. Nature 544, 427–433 (2017).
pubmed: 28447635
doi: 10.1038/nature22043
pmcid: 28447635
Grønvold, L., Schubert, M., Sandve, S. R., Fjellheim, S. & Hvidsten, T. R. Comparative transcriptomics provides insight into the evolution of cold response in Pooideae. bioRxiv (2017).
Liu, J., Zhou, Y., Luo, C., Xiang, Y. & An, L. De novo transcriptome sequencing of desert herbaceous Achnatherum splendens (Achnatherum) seedlings and identification of salt tolerance genes. Genes 7, E12 (2016).
pubmed: 27023614
doi: 10.3390/genes7040012
pmcid: 27023614
Grabherr, M. G. et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat. Biotechnol. 29, 644–652 (2011).
pubmed: 3571712
pmcid: 3571712
doi: 10.1038/nbt.1883
Löytynoja, A. Phylogeny-aware alignment with PRANK. Methods Mol. Biol. 1079, 155–170 (2014).
pubmed: 24170401
doi: 10.1007/978-1-62703-646-7_10
pmcid: 24170401
Stamatakis, A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30, 1312–1313 (2014).
pubmed: 3998144
pmcid: 3998144
doi: 10.1093/bioinformatics/btu033
Meharg, C. et al. Trait-directed de novo population transcriptome dissects genetic regulation of a balanced polymorphism in phosphorus nutrition/arsenate tolerance in a wild grass, Holcus lanatus. New Phytol. 201, 144–154 (2014).
pubmed: 24102375
doi: 10.1111/nph.12491
pmcid: 24102375
Yang, Z. PAML 4: phylogenetic analysis by maximum likelihood. Mol. Biol. Evol. 24, 1586–1591 (2007).
doi: 10.1093/molbev/msm088
Dawson, A. M. et al. Isolation and fine mapping of Rps6: an intermediate host resistance gene in barley to wheat stripe rust. Theor. Appl. Genet. 129, 831–843 (2016).
pubmed: 26754419
pmcid: 4799244
doi: 10.1007/s00122-015-2659-x
Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).
pubmed: 25516281
pmcid: 25516281
doi: 10.1186/s13059-014-0550-8
Huber, W. et al. Orchestrating high-throughput genomic analysis with bioconductor. Nat. Methods 12, 115–121 (2015).
pubmed: 25633503
pmcid: 4509590
doi: 10.1038/nmeth.3252
Storey, J. D. & Tibshirani, R. Statistical significance for genomewide studies. Proc. Natl Acad. Sci. USA 100, 9440–9445 (2003).
pubmed: 12883005
doi: 10.1073/pnas.1530509100
pmcid: 12883005
Parker, D. et al. Phosphorylation of CREB at Ser-133 induces complex formation with CREB-binding protein via a direct mechanism. Mol. Cell Biol. 16, 694–703 (1996).
pubmed: 8552098
pmcid: 231049
doi: 10.1128/MCB.16.2.694