Eight Million Years of Satellite DNA Evolution in Grasshoppers of the Genus Schistocerca Illuminate the Ins and Outs of the Library Hypothesis.
chromosomal evolution
genome organization
repetitive DNA
tandem repeats
Journal
Genome biology and evolution
ISSN: 1759-6653
Titre abrégé: Genome Biol Evol
Pays: England
ID NLM: 101509707
Informations de publication
Date de publication:
01 03 2020
01 03 2020
Historique:
accepted:
30
01
2020
entrez:
27
3
2020
pubmed:
27
3
2020
medline:
18
2
2021
Statut:
ppublish
Résumé
Satellite DNA (satDNA) is an abundant class of tandemly repeated noncoding sequences, showing high rate of change in sequence, abundance, and physical location. However, the mechanisms promoting these changes are still controversial. The library model was put forward to explain the conservation of some satDNAs for long periods, predicting that related species share a common collection of satDNAs, which mostly experience quantitative changes. Here, we tested the library model by analyzing three satDNAs in ten species of Schistocerca grasshoppers. This group represents a valuable material because it diversified during the last 7.9 Myr across the American continent from the African desert locust (Schistocerca gregaria), and this thus illuminates the direction of evolutionary changes. By combining bioinformatic and cytogenetic, we tested whether these three satDNA families found in S. gregaria are also present in nine American species, and whether differential gains and/or losses have occurred in the lineages. We found that the three satDNAs are present in all species but display remarkable interspecies differences in their abundance and sequences while being highly consistent with genus phylogeny. The number of chromosomal loci where satDNA is present was also consistent with phylogeny for two satDNA families but not for the other. Our results suggest eminently chance events for satDNA evolution. Several evolutionary trends clearly imply either massive amplifications or contractions, thus closely fitting the library model prediction that changes are mostly quantitative. Finally, we found that satDNA amplifications or contractions may influence the evolution of monomer consensus sequences and by chance playing a major role in driftlike dynamics.
Identifiants
pubmed: 32211863
pii: 5811468
doi: 10.1093/gbe/evaa018
pmc: PMC7093836
doi:
Substances chimiques
DNA, Satellite
0
Heterochromatin
0
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, Non-P.H.S.
Langues
eng
Sous-ensembles de citation
IM
Pagination
88-102Informations de copyright
© The Author(s) 2020. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
Références
Gene. 2008 Feb 15;409(1-2):72-82
pubmed: 18182173
Trends Genet. 2002 Nov;18(11):587-9
pubmed: 12414190
Nucleic Acids Res. 1999 Jan 15;27(2):573-80
pubmed: 9862982
Mol Biol Evol. 2011 Oct;28(10):2731-9
pubmed: 21546353
Exp Cell Res. 1972 Nov;75(1):304-6
pubmed: 4117921
Genet Res Int. 2012;2012:430136
pubmed: 22567387
Genome Biol Evol. 2019 Apr 1;11(4):1152-1165
pubmed: 30888421
Sci Rep. 2016 Jul 07;6:28333
pubmed: 27385065
Science. 1976 Feb 13;191(4227):528-35
pubmed: 1251186
Nature. 1994 Sep 15;371(6494):215-20
pubmed: 8078581
Bioinformatics. 2009 Jun 1;25(11):1451-2
pubmed: 19346325
Chromosome Res. 2015 Sep;23(3):441-61
pubmed: 26384818
Nature. 1970 Aug 22;227(5260):794-8
pubmed: 4317352
Fed Proc. 1976 Jan;35(1):23-35
pubmed: 1107072
Chromosoma. 2018 Sep;127(3):323-340
pubmed: 29549528
Bioinformatics. 2013 Mar 15;29(6):792-3
pubmed: 23376349
Chromosoma. 2015 Jun;124(2):263-75
pubmed: 25472934
J Genet. 2018 Jun;97(2):575-580
pubmed: 29932079
Mol Biol Evol. 1998 Aug;15(8):1062-8
pubmed: 9718733
PLoS Biol. 2009 Oct;7(10):e1000234
pubmed: 19859525
Mol Biol Evol. 2017 Apr 1;35(4):925-941
pubmed: 29361128
Bioinformatics. 2000 Feb;16(2):178-9
pubmed: 10842741
Mol Biol Evol. 1992 Nov;9(6):1018-28
pubmed: 1435232
Front Genet. 2017 Aug 14;8:103
pubmed: 28855916
BMC Evol Biol. 2014 Nov 25;14:233
pubmed: 25424548
Chromosoma. 2017 Aug;126(4):487-500
pubmed: 27522227
Curr Opin Genet Dev. 2018 Apr;49:70-78
pubmed: 29579574
Nat Commun. 2014;5:2957
pubmed: 24423660
Sci Rep. 2017 Oct 10;7(1):12726
pubmed: 29018237
BMC Bioinformatics. 2010 Jul 15;11:378
pubmed: 20633259
Mol Biol Evol. 1993 May;10(3):647-59
pubmed: 8336547
Gene. 2004 Aug 18;338(1):133-42
pubmed: 15302414
Genetics. 1987 Mar;115(3):553-67
pubmed: 3569882
Heredity (Edinb). 2010 Jun;104(6):543-51
pubmed: 19844270
Genes (Basel). 2017 Sep 18;8(9):
pubmed: 28926993
Genetics. 1986 Apr;112(4):947-62
pubmed: 3957013
Cell. 1977 Dec;12(4):1069-84
pubmed: 597857
PLoS Biol. 2010 Mar 09;8(3):e1000327
pubmed: 20231874
Genome Res. 1999 Sep;9(9):868-77
pubmed: 10508846
Genes (Basel). 2018 Oct 26;9(11):
pubmed: 30373193
Genome Biol Evol. 2014 May 19;6(6):1279-86
pubmed: 24846631
Proc Biol Sci. 2006 Apr 7;273(1588):767-74
pubmed: 16618668
Sci Rep. 2017 Jul 26;7(1):6606
pubmed: 28747803
Chromosome Res. 2019 Sep;27(3):237-252
pubmed: 30771198
EMBO J. 2002 Nov 15;21(22):5955-9
pubmed: 12426367
Heredity (Edinb). 2010 Apr;104(4):393-400
pubmed: 19756039
Nature. 1982 Sep 9;299(5879):111-7
pubmed: 7110332
Nucleic Acids Res. 2004 Mar 19;32(5):1792-7
pubmed: 15034147