Phenotypic effects of the U-genome variation in nascent synthetic hexaploids derived from interspecific crosses between durum wheat and its diploid relative Aegilops umbellulata.


Journal

PloS one
ISSN: 1932-6203
Titre abrégé: PLoS One
Pays: United States
ID NLM: 101285081

Informations de publication

Date de publication:
2020
Historique:
received: 05 02 2020
accepted: 17 03 2020
entrez: 3 4 2020
pubmed: 3 4 2020
medline: 9 7 2020
Statut: epublish

Résumé

Aegilops umbellulata is a wild diploid wheat species with the UU genome that is an important genetic resource for wheat breeding. To exploit new synthetic allohexaploid lines available as bridges for wheat breeding, a total of 26 synthetic hexaploid lines were generated through crossing between the durum wheat cultivar Langdon and 26 accessions of Ae. umbellulata. In nascent synthetic hexaploids with the AABBUU genome, the presence of the set of seven U-genome chromosomes was confirmed with U-genome chromosome-specific markers developed based on RNA-seq-derived data from Ae. umbellulata. The AABBUU synthetic hexaploids showed large variations in flowering- and morphology-related traits, and these large variations transmitted well from the parental Ae. umbellulata accessions. However, the variation ranges in most traits examined were reduced under the AABBUU hexaploid background compared with under the diploid parents. The AABBUU and AABBDD synthetic hexaploids were clearly discriminated by several morphological traits, and an increase of plant height and in the number of spikes and a decrease of spike length were commonly observed in the AABBUU synthetics. Thus, interspecific differences in several morphological traits between Ae. umbellulata and A. tauschii largely affected the basic plant architecture of the synthetic hexaploids. In conclusion, the AABBUU synthetic hexaploid lines produced in the present study are useful resources for the introgression of desirable genes from Ae. umbellulata to common wheat.

Identifiants

pubmed: 32240263
doi: 10.1371/journal.pone.0231129
pii: PONE-D-20-03425
pmc: PMC7117738
doi:

Substances chimiques

Genetic Markers 0

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

e0231129

Déclaration de conflit d'intérêts

The authors have declared that no competing interests exist.

Références

DNA Res. 2012 Dec;19(6):487-97
pubmed: 23125207
Mol Ecol. 2010 Mar;19(5):999-1013
pubmed: 20149088
Genetics. 2009 Mar;181(3):1147-57
pubmed: 19104075
BMC Plant Biol. 2018 Nov 8;18(1):271
pubmed: 30409135
Genes Genet Syst. 2012;87(1):9-18
pubmed: 22531790
Front Plant Sci. 2019 May 09;10:585
pubmed: 31143197
Plant Physiol. 2002 Jun;129(2):733-46
pubmed: 12068115
Theor Appl Genet. 2018 Aug;131(8):1615-1626
pubmed: 29705916
Front Plant Sci. 2019 Feb 01;10:4
pubmed: 30774638
Genes Genet Syst. 2015;90(2):89-98
pubmed: 26399768
PLoS One. 2017 Mar 6;12(3):e0173210
pubmed: 28264068
PLoS One. 2008 Sep 04;3(9):e3138
pubmed: 18769547
Mol Genet Genomics. 2016 Aug;291(4):1681-94
pubmed: 27142109
Mol Genet Genomics. 2019 Oct;294(5):1327-1341
pubmed: 31187273
Plant Physiol. 2012 Dec;160(4):1871-80
pubmed: 23054566
Proc Natl Acad Sci U S A. 1995 May 9;92(10):4487-91
pubmed: 7753830
Genetics. 2002 Apr;160(4):1651-9
pubmed: 11973318
Plant Cell. 2000 Sep;12(9):1551-68
pubmed: 11006331
BMC Evol Biol. 2015 Sep 30;15:213
pubmed: 26419628
J Sci Food Agric. 2018 Apr;98(6):2156-2167
pubmed: 28960410
Plant Cell. 2001 Aug;13(8):1749-59
pubmed: 11487690
BMC Genomics. 2018 Aug 6;19(1):586
pubmed: 30081834
DNA Res. 2019 Apr 1;26(2):171-182
pubmed: 30715317
Plant Mol Biol. 2002 Mar-Apr;48(5-6):633-47
pubmed: 11999840
Front Plant Sci. 2015 Nov 12;6:978
pubmed: 26617620
Theor Appl Genet. 2014 Feb;127(2):261-71
pubmed: 24158251
Plant Mol Biol. 2017 Dec;95(6):625-645
pubmed: 29090430
Theor Appl Genet. 2019 Aug;132(8):2295-2308
pubmed: 31098756
Plant Cell. 2001 Aug;13(8):1735-47
pubmed: 11487689
PLoS One. 2014 May 12;9(5):e96855
pubmed: 24821410
Theor Appl Genet. 1994 Apr;88(1):110-5
pubmed: 24185890
Genetics. 2004 Aug;167(4):1961-73
pubmed: 15342533
G3 (Bethesda). 2017 May 5;7(5):1551-1561
pubmed: 28364036
BMC Genomics. 2016 Dec 15;17(1):1039
pubmed: 27978816
Nature. 2017 Nov 23;551(7681):498-502
pubmed: 29143815
Theor Appl Genet. 2007 Aug;115(4):509-18
pubmed: 17639301
Plant Mol Biol. 2020 Jan;102(1-2):55-72
pubmed: 31748889

Auteurs

Moeko Okada (M)

Graduate School of Agricultural Science, Kobe University, Kobe, Japan.

Asami Michikawa (A)

Graduate School of Agricultural Science, Kobe University, Kobe, Japan.

Kentaro Yoshida (K)

Graduate School of Agricultural Science, Kobe University, Kobe, Japan.

Kiyotaka Nagaki (K)

Institute of Plant Science and Resources, Okayama University, Okayama, Japan.

Tatsuya M Ikeda (TM)

Western Region Agricultural Research Center, National Agriculture and Food Research Organization, Fukuyama, Hiroshima, Japan.

Shigeo Takumi (S)

Graduate School of Agricultural Science, Kobe University, Kobe, Japan.

Articles similaires

Genome, Chloroplast Phylogeny Genetic Markers Base Composition High-Throughput Nucleotide Sequencing
Humans Macular Degeneration Mendelian Randomization Analysis Life Style Genome-Wide Association Study
Capsicum Disease Resistance Plant Diseases Polymorphism, Single Nucleotide Ralstonia solanacearum

Classifications MeSH