Transcriptome profiling of spike provides expression features of genes related to terpene biosynthesis in lavender.


Journal

Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288

Informations de publication

Date de publication:
24 04 2020
Historique:
received: 12 07 2019
accepted: 07 04 2020
entrez: 26 4 2020
pubmed: 26 4 2020
medline: 1 12 2020
Statut: epublish

Résumé

Lavender (Lavandula angustifolia) is an important economic plant because of the value of its essential oil (EO). The Yili Valley in Xinjiang has become the largest lavender planting base in China. However, there is a lack of research on the gene expression regulation of EO biosynthesis and metabolism in local varieties. Here, de novo transcriptome analysis of inflorescence of three development stages from initial flower bud to flowering stage 50% from two lavender cultivars with contrasting EO production revealed the dynamics of 100,177 differentially expressed transcripts (DETs) in various stages of spike development within and across the cultivars. The lavender transcriptome contained 77 DETs with annotations related to terpenoid biosynthesis. The expression profiles of the 27 genes involved in the methylerythritol phosphate (MEP) pathway, 22 genes in the mevalonate (MVA) pathway, 28 genes related to monoterpene and sesquiterpene biosynthesis during inflorescence development were comprehensively characterized, and possible links between the expression changes of genes and contents of EO constituents were explored. The upregulated genes were mainly concentrated in the MEP pathway, while most genes in the MVA pathway were downregulated during flower development, and cultivars with a higher EO content presented higher expression of genes in the MEP pathway, indicating that EOs were chiefly produced through the MEP pathway. Additionally, MYB transcription factors constituted the largest number of transcripts in all samples, suggesting their potential roles in regulating EO biosynthesis. The sequences and transcriptional patterns of the transcripts will be helpful for understanding the molecular basis of lavender terpene biosynthesis.

Identifiants

pubmed: 32332830
doi: 10.1038/s41598-020-63950-4
pii: 10.1038/s41598-020-63950-4
pmc: PMC7181790
doi:

Substances chimiques

Oils, Volatile 0
RNA, Messenger 0
Terpenes 0
Transcription Factors 0

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

6933

Références

Lesage-Meessen, L., Bou, M., Sigoillot, J. C., Faulds, C. B. & Lomascolo, A. Essential oils and distilled straws of lavender and lavandin: a review of current use and potential application in white biotechnology. Appl. Microbiol. Biotechnol. 99, 3375–3385 (2015).
doi: 10.1007/s00253-015-6511-7
Adal, A. M., Sarker, L. S., Malli, R. P. N., Liang, P. & Mahmoud, S. S. RNA-Seq in the discovery of a sparsely expressed scent-determining monoterpene synthase in lavender (Lavandula). Planta 249, 271–290 (2019).
doi: 10.1007/s00425-018-2935-5
Cavanagh, H. M. A. & Wilkinson, J. N. Biological activities of lavender essential oil. Phytother. Res. 16, 301–308 (2002).
doi: 10.1002/ptr.1103
Denner, S. S. Lavandula Angustifolia Miller English Lavender. Holist. Nurs. Pract. 23, 57–64 (2009).
doi: 10.1097/01.HNP.0000343210.56710.fc
Aprotosoaie, A. C., Gille, E., Trifan, A., Luca, V. S. & Miron, A. Essential oils of Lavandula genus: a systematic review of their chemistry. Phytochem. Rev. 16, 761–799 (2017).
doi: 10.1007/s11101-017-9517-1
Iriti, M. et al. Histo-cytochemistry and scanning electron microscopy of lavender glandular trichomes following conventional and microwave-assisted hydrodistillation of essential oils: a comparative study. Flavour Fragr. J. 21, 704–712 (2006).
doi: 10.1002/ffj.1692
Zuzarte, M. R., Dinis, A. M., Cavaleiro, C., Salgueiro, L. R. & Canhoto, J. M. Trichomes, essential oils and in vitro propagation of Lavandula pedunculata (Lamiaceae). Ind. Crops. Prod. 32, 580–587 (2010).
doi: 10.1016/j.indcrop.2010.07.010
Lange, B. M., Rujan, T., Martin, W. & Croteau, R. Isoprenoid biosynthesis: The evolution of two ancient and distinct pathways across genomes. Proc. Natl. Acad. Sci. USA 97, 13172–13177 (2000).
doi: 10.1073/pnas.240454797
Lane, A., Boecklemann, A., Woronuk, G. N., Sarker, L. & Mahmoud, S. S. A genomics resource for investigating regulation of essential oil production in Lavandula angustifolia. Planta 231, 835–845 (2010).
doi: 10.1007/s00425-009-1090-4
Mendoza-Poudereux, I. et al. Metabolic cross-talk between pathways of terpenoid backbone biosynthesis in spike lavender. Plant Physiol. Biochem. 95, 113–120 (2015).
doi: 10.1016/j.plaphy.2015.07.029
Liao, P., Hemmerlin, A., Bach, T. J. & Chye, M. L. The potential of the mevalonate pathway for enhanced isoprenoid production. Biotechnol. Adv. 34, 697–713 (2016).
doi: 10.1016/j.biotechadv.2016.03.005
Rehman, R., Hanif, M. A., Mushtaq, Z. & Al-Sadi, A. M. Biosynthesis of essential oils in aromatic plants: A review. Food Rev. Int. 32, 117–160 (2016).
doi: 10.1080/87559129.2015.1057841
Rodriguez-Concepcion, M. & Boronat, A. Breaking new ground in the regulation of the early steps of plant isoprenoid biosynthesis. Curr. Opin. Plant Biol. 25, 17–22 (2015).
doi: 10.1016/j.pbi.2015.04.001
Laule, O. et al. Crosstalk between cytosolic and plastidial pathways of isoprenoid biosynthesis in Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA 100, 6866–6871 (2003).
doi: 10.1073/pnas.1031755100
Malli, R. P. N., Adal, A. M., Sarker, L. S., Liang, P. & Mahmoud, S. S. De novo sequencing of the Lavandula angustifolia genome reveals highly duplicated and optimized features for essential oil production. Planta 249, 251–256 (2019).
doi: 10.1007/s00425-018-3012-9
Vranova, E., Coman, D. & Gruissem, W. Structure and Dynamics of the Isoprenoid Pathway Network. Mol. Plant 5, 318–333 (2012).
doi: 10.1093/mp/sss015
Landmann, C. et al. Cloning and functional characterization of three terpene synthases from lavender (Lavandula angustifolia). Arch. Biochem. Biophys. 465, 417–429 (2007).
doi: 10.1016/j.abb.2007.06.011
Demissie, Z. A., Sarker, L. S. & Mahmoud, S. S. Cloning and functional characterization of β-phellandrene synthase from Lavandula angustifolia. Planta 233, 685–696 (2011).
doi: 10.1007/s00425-010-1332-5
Demissie, Z. A. et al. Cloning, functional characterization and genomic organization of 1,8-cineole synthases from Lavandula. Plant Mol. Biol. 79, 393–411 (2012).
doi: 10.1007/s11103-012-9920-3
Sarker, L. S., Demissie, Z. A. & Mahmoud, S. S. Cloning of a sesquiterpene synthase from Lavandula x intermedia glandular trichomes. Planta 238, 983–989 (2013).
doi: 10.1007/s00425-013-1937-6
Jullien, F. et al. Isolation and functional characterization of a τ-cadinol synthase, a new sesquiterpene synthase from Lavandula angustifolia. Plant Mol. Biol. 84, 227–241 (2014).
doi: 10.1007/s11103-013-0131-3
Benabdelkader, T. et al. Functional characterization of terpene synthases and chemotypic variation in three lavender species of section Stoechas. Physiol. Plant 153, 43–57 (2015).
doi: 10.1111/ppl.12241
Adal, A. M., Sarker, L. S., Lemke, A. D. & Mahmoud, S. S. Isolation and functional characterization of a methyl jasmonate-responsive 3-carene synthase from Lavandula x intermedia. Plant Mol. Biol. 93, 641–657 (2017).
doi: 10.1007/s11103-017-0588-6
Wang, Z., Gerstein, M. & Snyder, M. RNA-Seq: a revolutionary tool for transcriptomics. Nat. Rev. Genet. 10, 57–63 (2009).
doi: 10.1038/nrg2484
Grabherr, M. G. et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat. Biotechnol. 29, 644–652 (2011).
doi: 10.1038/nbt.1883
Guitton, Y. et al. Lavender inflorescence: a model to study regulation of terpenes synthesis. Plant. Signal. Behav. 5, 749–751 (2010).
doi: 10.4161/psb.5.6.11704
Simão, F. A., Waterhouse, R. M., Ioannidis, P., Kriventseva, E. V. & Zdobnov, E. M. BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics 31, 3210–3212 (2015).
doi: 10.1093/bioinformatics/btv351
Tholl, D. Terpene synthases and the regulation, diversity and biological roles of terpene metabolism. Curr. Opin. Plant Biol. 9, 297–304 (2006).
doi: 10.1016/j.pbi.2006.03.014
Narnoliya, L. K., Kaushal, G., Singh, S. P. & Sangwan, R. S. De novo transcriptome analysis of rose-scented geranium provides insights into the metabolic specificity of terpene and tartaric acid biosynthesis. BMC Genomics 18, 74 (2017).
doi: 10.1186/s12864-016-3437-0
Falk, L., Biswas, K., Boeckelmann, A., Lane, A. & Mahmoud, S. S. An efficient method for the micropropagation of lavenders: Regeneration of a unique mutant. J. Essent. Oil Res. 21, 225–228 (2009).
doi: 10.1080/10412905.2009.9700154
Soorni, A. et al. Transcriptome landscape variation in the Genus Thymus. Genes (Basel) 10, 620 (2019).
doi: 10.3390/genes10080620
Yue, Y. C., Yu, R. C. & Fan, Y. Transcriptome profiling provides new insights into the formation of floral scent in Hedychium coronarium. BMC Genomics 16, 470 (2015).
doi: 10.1186/s12864-015-1653-7
Hong, G., Xue, X., Mao, Y., Wang, L. & Chen, X. Arabidopsis MYC2 interacts with DELLA proteins in regulating sesquiterpene synthase gene expression. Plant Cell 24, 2635–48 (2012).
doi: 10.1105/tpc.112.098749
Yang, L. F. et al. Full-length transcriptome sequences of ephemeral plant Arabidopsis pumila provides insight into gene expression dynamics during continuous salt stress. BMC Genomics 19, 717 (2018).
doi: 10.1186/s12864-018-5106-y
Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).
doi: 10.1186/s13059-014-0550-8
Trapnell, C. et al. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat. Biotechnol. 28, 511–515 (2010).
doi: 10.1038/nbt.1621
Conesa, A. et al. Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 21, 3674–3676 (2005).
doi: 10.1093/bioinformatics/bti610
Mao, X. Z., Cai, T., Olyarchuk, J. G. & Wei, L. P. Automated genome annotation and pathway identification using the KEGG Orthology (KO) as a controlled vocabulary. Bioinformatics 21, 3787–3793 (2005).
doi: 10.1093/bioinformatics/bti430
Livak, K. J. & Schmittgen, T. D. Analysis of relative gene expression data using real-time quantitative PCR and the 2
doi: 10.1006/meth.2001.1262

Auteurs

Danli Guo (D)

Institute of Agricultural Sciences, Fourth Division of Xinjiang Production and Construction Corps, Cocodala, 835213, People's Republic of China.
Special Plant Genomics Laboratory, College of Life Sciences, Shihezi University, Shihezi, 832003, People's Republic of China.

Kaicheng Kang (K)

Special Plant Genomics Laboratory, College of Life Sciences, Shihezi University, Shihezi, 832003, People's Republic of China.

Pu Wang (P)

Institute of Agricultural Sciences, Fourth Division of Xinjiang Production and Construction Corps, Cocodala, 835213, People's Republic of China.

Min Li (M)

Institute of Agricultural Sciences, Fourth Division of Xinjiang Production and Construction Corps, Cocodala, 835213, People's Republic of China. 1341997078@qq.com.

Xianzhong Huang (X)

Special Plant Genomics Laboratory, College of Life Sciences, Shihezi University, Shihezi, 832003, People's Republic of China. xianzhongh106@163.com.
College of Agriculture, Anhui Science and Technology University, Fengyang, 233100, People's Republic of China. xianzhongh106@163.com.

Articles similaires

Genome, Chloroplast Phylogeny Genetic Markers Base Composition High-Throughput Nucleotide Sequencing
Animals Hemiptera Insect Proteins Phylogeny Insecticides
Amaryllidaceae Alkaloids Lycoris NADPH-Ferrihemoprotein Reductase Gene Expression Regulation, Plant Plant Proteins

Classifications MeSH