Analysis of trap distribution of a red persistent luminescent materials using thermoluminescence.

CaSrS:Eu persistent luminescence phosphor thermoluminescence

Journal

Luminescence : the journal of biological and chemical luminescence
ISSN: 1522-7243
Titre abrégé: Luminescence
Pays: England
ID NLM: 100889025

Informations de publication

Date de publication:
Nov 2020
Historique:
received: 13 12 2019
revised: 17 03 2020
accepted: 21 04 2020
pubmed: 3 5 2020
medline: 1 7 2021
entrez: 3 5 2020
Statut: ppublish

Résumé

Trap distribution plays a crucial role in deciding the applicability of a material. The thermoluminescence (TL) parameter that describes trap distribution is η, which has never been discussed in TL analysis so far. TL analysis of a commercially available red persistent luminescent material (CaSrS:Eu) was performed using computerized glow curve deconvolution (CGCD) in the new general order kinetics. CGCD results showed that the red persistent luminescent material in the temperature range 300-600º K was comprised of nine peaks. Activation energy ranged from 0.66-1.27 eV. Frequency factor was in the range 10

Identifiants

pubmed: 32359004
doi: 10.1002/bio.3819
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

1077-1083

Informations de copyright

© 2020 John Wiley & Sons, Ltd.

Références

J. T. Randall, M. H. F. Wilkins, Proc. R. Soc. A Math. Phys. Eng. Sci. 1945, 184, 365.
G. F. J. Garlick, A. F. Gibson, Proc. Phys. Soc. 1948, 60, 574.
C. E. May, J. A. Partridge, J. Chem. Phys. 1964, 40, 1401.
L. L. Singh, IJLA 2018, 8, 538.
L. L. Singh, Radiat. Eff. Defects Solids 2017, 172, 271.
J. N. Reddy, K. V. R. Murthy, Defect Diffus. Forum 2014, 357, 261.
G. Blasse, B. C. Grabmaier, Luminescent Materials, Springer-Verlag, Berlin 1994.
L. L. Singh, R. K. Gartia, Radiat. Meas. 2013, 59, 160.
G. Kitis, N. D. Vlachos, Radiat. Meas. 2013, 48, 47.
P. W. Lawrence, R. M. Corless, D. J. Jeffrey, ACM Trans. Math. Softw. 2012, 38, 1.
L. L. Singh, R. K. Gartia, Nucl. Instrum.ments Meth.ods Phys. Res. Sect. B 2015, 346, 45.
L. L. Singh, R. K. K. Gartia, Nucl. Instrum. Meth. B 2014, 319, 39.
A. Necmeddin Yazici, M. Bedir, H. Bozkurt, H. Bozkurt, Nucl. Instrum Meth. B 2008, 266, 613.
S. W. S. McKeever, Phys. Status Solidi 1980, 62, 331.
G. Talsky, Derivative Spectrophotometry, Wiley 1994.
T. B. Singh, Indian J. Phys. 2001, 75A, 229.
H. G. Balian, N. W. Eddy, Nucl. Instrum. Meth. 1977, 145, 389.
S. K. Misra, N. W. Eddy, Nucl. Instrum. Meth. 1979, 166, 537.

Auteurs

L Lovedy Singh (LL)

RIST, Physics Ddepartment, Manipur University, Imphal, India.

S Nabadwip Singh (SN)

Physics Department, Oriental College, Lahore, Pakistan.

Th Ranjan Singh (TR)

Physics Department, Moirang College, Manipur, India.

E Gopal (E)

Physics Department C.M.J. University, Shillong, India.

Articles similaires

Perylene Dopamine Electrochemical Techniques Imides Luminescent Measurements
Anthraquinones Kinetics Water Purification Adsorption Thermodynamics
1.00
Humans Pyrophosphatases Protein Conformation Molecular Dynamics Simulation Kinetics

Classifications MeSH