The multifaceted histone chaperone RbAp46/48 in Plasmodium falciparum: structural insights, production, and characterization.
Amino Acid Sequence
Cell Nucleus
/ metabolism
Chromatin
/ metabolism
Gene Expression
Histone Chaperones
/ chemistry
Histones
/ metabolism
Life Cycle Stages
/ genetics
Plasmodium falciparum
/ chemistry
Protein Binding
Protein Conformation
Protozoan Proteins
/ chemistry
Recombinant Fusion Proteins
/ chemistry
CAF-1C
Chromatin remodeling
Plasmodium falciparum
Protein expression and purification
RbAp46/48
Subcellular localization
Journal
Parasitology research
ISSN: 1432-1955
Titre abrégé: Parasitol Res
Pays: Germany
ID NLM: 8703571
Informations de publication
Date de publication:
Jun 2020
Jun 2020
Historique:
received:
28
08
2019
accepted:
15
03
2020
pubmed:
5
5
2020
medline:
1
8
2020
entrez:
5
5
2020
Statut:
ppublish
Résumé
RbAp46/RBBP7 and RbAp48/RBBP4 are WD40-repeat histone chaperones and chromatin adaptors that reside in multiple complexes involved in maintenance of chromatin structure. RbAp48 is the essential subunit of the chromatin assembly factor-1 (CAF-1) complex, therefore also named as CAF-1C. A detailed in silico sequence and structure analysis of homologs of RbAp46/48 in Plasmodium falciparum (PF3D7_0110700 and PF3D7_1433300) exhibited conservation of characteristic features in both the protein-seven-bladed WD40 β-propeller conformation and different binding interfaces. A comparative structural analysis highlighted species-specific features of the parasite, yeast, drosophila, and human RbAp46/48. In the present study, we report cloning, expression, and characterization of P. falciparum PF3D7_0110700, a putative RbAp46/48 (PfRbAp46/48). PfRbAp46/48 was cloned into pTEM11 vector in fusion with 6xHistidine tag and over-expressed in Escherichia coli B834 cells. The protein was purified by Ni-NTA followed by gel permeation chromatography. The protein expressed in all the three asexual blood stages and exhibited nuclear localization. We showed direct interaction of the purified rPfRbAp46/48 with the histone H4. These findings further our understanding of RbAp46/48 proteins and role of these proteins in the parasite biology.
Identifiants
pubmed: 32363442
doi: 10.1007/s00436-020-06669-5
pii: 10.1007/s00436-020-06669-5
doi:
Substances chimiques
Chromatin
0
Histone Chaperones
0
Histones
0
Protozoan Proteins
0
Recombinant Fusion Proteins
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
1753-1765Références
Alqarni SS, Murthy A, Zhang W, Przewloka MR, Silva AP, Watson AA, Lejon S, Pei XY, Smits AH, Kloet SL, Wang H (2014) Insight into the architecture of the NuRD complex structure of the RbAp48-MTA1 subcomplex. J Biol Chem 289(32):21844–21855
pubmed: 24920672
pmcid: 4139204
doi: 10.1074/jbc.M114.558940
Chahar P, Kaushik M, Gill SS, Gakhar SK, Gopalan N, Datt M, Sharma A, Gill R (2015) Genome-wide collation of the Plasmodium falciparum WDR protein superfamily reveals malarial parasite-specific features. PLoS One 10(6):e0128507
pubmed: 26043001
pmcid: 4456382
doi: 10.1371/journal.pone.0128507
Chen S, Jiao L, Shubbar M, Yang X, Liu X (2018) Unique structural platforms of Suz12 dictate distinct classes of PRC2 for chromatin binding. Mol Cell 69(5):840–852
pubmed: 29499137
pmcid: 5912153
doi: 10.1016/j.molcel.2018.01.039
Creekmore AL, Walt KA, Schultz-Norton JR, Ziegler YS, McLeod IX, Yates JR, Nardulli AM (2008) The role of retinoblastoma-associated proteins 46 and 48 in estrogen receptor alpha mediated gene expression. Mol Cell Endocrinol 291(1–2):79–86
pubmed: 18577416
pmcid: 2642675
doi: 10.1016/j.mce.2008.05.016
Gu X, Jiang D, Yang W, Jacob Y, Michaels SD, He Y (2011) Arabidopsis homologs of retinoblastoma-associated protein 46/48 associate with a histone deacetylase to act redundantly in chromatin silencing. PLoS Genet 7(11):e1002366
pubmed: 22102827
pmcid: 3213158
doi: 10.1371/journal.pgen.1002366
Gupta MK, Agarawal M, Banu K, Reddy KS, Gaur D, Dhar SK (2018) Role of chromatin assembly factor 1 in DNA replication of Plasmodium falciparum. Biochem Biophys Res Commun 495(1):1285–1291
pubmed: 29183721
doi: 10.1016/j.bbrc.2017.11.131
Harrison MM, Ceol CJ, Lu X, Horvitz HR (2006) Some C. elegans class B synthetic multivulva proteins encode a conserved LIN-35 Rb-containing complex distinct from a NuRD-like complex. Proc Natl Acad Sci 103(45):16782–16787
pubmed: 17075059
doi: 10.1073/pnas.0608461103
Hassig CA, Fleischer TC, Billin AN, Schreiber SL, Ayer DE (1997) Histone deacetylase activity is required for full transcriptional repression by mSin3A. Cell 89(3):341–347
pubmed: 9150133
doi: 10.1016/S0092-8674(00)80214-7
pmcid: 9150133
Kaufman PD, Kobayashi R, Stillman B (1997) Ultraviolet radiation sensitivity and reduction of telomeric silencing in Saccharomyces cerevisiae cells lacking chromatin assembly factor-I. Genes Dev 11(3):345–357
pubmed: 9030687
doi: 10.1101/gad.11.3.345
Kelley LA, Mezulis S, Yates CM, Wass MN, Sternberg MJ (2015) The Phyre2 web portal for protein modeling, prediction and analysis. Nat Protoc 10(6):845–858
pubmed: 25950237
pmcid: 5298202
doi: 10.1038/nprot.2015.053
Kim D, Setiaputra D, Jung T, Chung J, Leitner A, Yoon J, Aebersold R, Hebert H, Yip CK, Song JJ (2016) Molecular architecture of yeast chromatin assembly factor 1. Sci Rep 6:26702
pubmed: 27221973
pmcid: 4879628
doi: 10.1038/srep26702
Kuzmichev A, Nishioka K, Erdjument-Bromage H, Tempst P, Reinberg D (2002) Histone methyltransferase activity associated with a human multiprotein complex containing the enhancer of Zeste protein. Genes Dev 16(22):2893–2905
pubmed: 12435631
pmcid: 187479
doi: 10.1101/gad.1035902
Lambros C, Vanderberg JP (1979) Synchronization of Plasmodium falciparum erythrocytic stages in culture. J Parasitol:418–420
pubmed: 383936
doi: 10.2307/3280287
Le Roch KG, Johnson JR, Florens L, Zhou Y, Santrosyan A, Grainger M, Yan SF, Williamson KC, Holder AA, Carucci DJ, Yates JR (2004) Global analysis of transcript and protein levels across the Plasmodium falciparum life cycle. Genome Res 14(11):2308–2318
pubmed: 15520293
pmcid: 525690
doi: 10.1101/gr.2523904
Lejon S, Thong SY, Murthy A, AlQarni S, Murzina NV, Blobel GA, Laue ED, Mackay JP (2011) Insights into association of the NuRD complex with FOG-1 from the crystal structure of an RbAp48· FOG-1 complex. J Biol Chem 286(2):1196–1203
pubmed: 21047798
doi: 10.1074/jbc.M110.195842
Liu Z, Li F, Zhang B, Li S, Wu J, Shi Y (2015) Structural basis of plant homeodomain finger 6 (PHF6) recognition by the retinoblastoma binding protein 4 (RBBP4) component of the nucleosome remodeling and deacetylase (NuRD) complex. J Biol Chem 290(10):6630–6638
pubmed: 25601084
pmcid: 4358295
doi: 10.1074/jbc.M114.610196
Liu WH, Roemer SC, Zhou Y, Shen ZJ, Dennehey BK, Balsbaugh JL, Liddle JC, Nemkov T, Ahn NG, Hansen KC, Tyler JK (2016) The Cac1 subunit of histone chaperone CAF-1 organizes CAF-1-H3/H4 architecture and tetramerizes histones. Elife 5:e18023
pubmed: 27690308
pmcid: 5045291
doi: 10.7554/eLife.18023
Lu X, Horvitz HR (1998) lin-35 and lin-53, two genes that antagonize a C. elegans Ras pathway, encode proteins similar to Rb and its binding protein RbAp48. Cell 95(7):981–991
pubmed: 9875852
doi: 10.1016/S0092-8674(00)81722-5
Luger K, Mäder AW, Richmond RK, Sargent DF, Richmond TJ (1997) Crystal structure of the nucleosome core particle at 2.8 Å resolution. Nature 389(6648):251–260
pubmed: 9305837
doi: 10.1038/38444
Luger K, Rechsteiner TJ, Richmond TJ (1999) Expression and purification of recombinant histones and nucleosome reconstitution. Methods Mol Biol 119:1–16
pubmed: 10804500
Martinez-Balbas MA, Tsukiyama T, Gdula D, Wu C (1998) Drosophila NURF-55, a WD repeat protein involved in histone metabolism. Proc Natl Acad Sci U S A 95:132–137
pubmed: 9419341
pmcid: 18150
doi: 10.1073/pnas.95.1.132
Mattiroli F, Gu Y, Balsbaugh JL, Ahn NG, Luger K (2017) The Cac2 subunit is essential for productive histone binding and nucleosome assembly in CAF-1. Sci Rep 7:46274
pubmed: 28418026
pmcid: 5394680
doi: 10.1038/srep46274
Millard CJ, Varma N, Saleh A, Morris K, Watson PJ, Bottrill AR, Fairall L, Smith CJ, Schwabe JW (2016) The structure of the core NuRD repression complex provides insights into its interaction with chromatin. Elife 5:e13941
pubmed: 27098840
pmcid: 4841774
doi: 10.7554/eLife.13941
Moody RR, Lo MC, Meagher JL, Lin CC, Stevers NO, Tinsley SL, Jung I, Matvekas A, Stuckey JA, Sun D (2018) Probing the interaction between the histone methyltransferase/deacetylase subunit RBBP4/7 and the transcription factor BCL11A in epigenetic complexes. J Biol Chem 293(6):2125–2136
pubmed: 29263092
doi: 10.1074/jbc.M117.811463
Murzina NV, Pei XY, Zhang W, Sparkes M, Vicente-Garcia J, Pratap JV, McLaughlin SH, Ben-Shahar TR, Verreault A, Luisi BF, Laue ED (2008) Structural basis for the recognition of histone H4 by the histone-chaperone RbAp46. Structure 16(7):1077–1085
pubmed: 18571423
pmcid: 2572730
doi: 10.1016/j.str.2008.05.006
Pease BN, Huttlin EL, Jedrychowski MP, Talevich E, Harmon J, Dillman T, Kannan N, Doerig C, Chakrabarti R, Gygi SP, Chakrabarti D (2013) Global analysis of protein expression and phosphorylation of three stages of Plasmodium falciparum intraerythrocytic development. J Proteome Res 12(9):4028–4045
pubmed: 23914800
pmcid: 5292867
doi: 10.1021/pr400394g
Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE (2004) UCSF chimera—a visualization system for exploratory research and analysis. J Comput Chem 25(13):1605–1612
pubmed: 15264254
doi: 10.1002/jcc.20084
Qian YW, Eva YH (1995) Dual retinoblastoma-binding proteins with properties related to a negative regulator of ras in yeast. J Biol Chem 270(43):25507–25513
pubmed: 7503932
doi: 10.1074/jbc.270.43.25507
Rosano GL, Ceccarelli EA (2014) Recombinant protein expression in Escherichia coli: advances and challenges. Front Microbiol 5:172
pubmed: 24860555
pmcid: 4029002
Schmitges FW, Prusty AB, Faty M, Stützer A, Lingaraju GM, Aiwazian J, Sack R, Hess D, Li L, Zhou S, Bunker RD (2011) Histone methylation by PRC2 is inhibited by active chromatin marks. Mol Cell 42(3):330–341
pubmed: 21549310
doi: 10.1016/j.molcel.2011.03.025
Schultz LE, Haltom JA, Almeida MP, Wierson WA, Solin SL, Weiss TJ, Helmer JA, Sandquist EJ, Shive HR, McGrail M (2018) Epigenetic regulators Rbbp4 and Hdac1 are overexpressed in a zebrafish model of RB1 embryonal brain tumor, and are required for neural progenitor survival and proliferation. Dis Model Mech 11(6)
doi: 10.1242/dmm.034124
Shang WH, Hori T, Westhorpe FG, Godek KM, Toyoda A, Misu S, Monma N, Ikeo K, Carroll CW, Takami Y, Fujiyama A (2016) Acetylation of histone H4 lysine 5 and 12 is required for CENP-A deposition into centromeres. Nat Commun 7:13465
pubmed: 27811920
pmcid: 5097169
doi: 10.1038/ncomms13465
Sun A, Li F, Liu Z, Jiang Y, Zhang J, Wu J, Shi Y (2018) Structural and biochemical insights into human zinc finger protein AEBP2 reveals interactions with RBBP4. Protein Cell 9(8):738–742
pubmed: 29134516
doi: 10.1007/s13238-017-0483-6
Taylor-Harding B, Binné UK, Korenjak M, Brehm A, Dyson NJ (2004) p55, the Drosophila ortholog of RbAp46/RbAp48, is required for the repression of dE2F2/RBF-regulated genes. Mol Cell Biol 24(20):9124–9136
pubmed: 15456884
pmcid: 517895
doi: 10.1128/MCB.24.20.9124-9136.2004
Trager W, Jensen JB (1976) Human malaria parasites in continuous culture. Science 193(4254):673–675
pubmed: 781840
doi: 10.1126/science.781840
Valieva ME, Armeev GA, Kudryashova KS, Gerasimova NS, Shaytan AK, Kulaeva OI, McCullough LL, Formosa T, Georgiev PG, Kirpichnikov MP, Studitsky VM (2016) Large-scale ATP-independent nucleosome unfolding by a histone chaperone. Nat Struct Mol Biol 23(12):1111–1116
pubmed: 27820806
pmcid: 5518926
doi: 10.1038/nsmb.3321
Verreault A, Kaufman PD, Kobayashi R, Stillman B (1996) Nucleosome assembly by a complex of CAF-1 and acetylated histones H3/H4. Cell 87(1):95–104
pubmed: 8858152
doi: 10.1016/S0092-8674(00)81326-4
Volk A, Crispino JD (2015) The role of the chromatin assembly complex (CAF-1) and its p60 subunit (CHAF1b) in homeostasis and disease. Biochim Biophys Acta 1849(8):979–986
pubmed: 26066981
pmcid: 4515380
doi: 10.1016/j.bbagrm.2015.05.009
World Malaria Report. WHO 2018
Xue Y, Wong J, Moreno GT, Young MK, Côté J, Wang W (1998) NURD, a novel complex with both ATP-dependent chromatin-remodeling and histone deacetylase activities. Mol Cell 2(6):851–861
pubmed: 9885572
doi: 10.1016/S1097-2765(00)80299-3
Yeh HH, Tseng YF, Hsu YC, Lan SH, Wu SY, Raghavaraju G, Cheng DE, Lee YR, Chang TY, Chow NH, Hung WC, Liu HS (2015) Ras induces experimental lung metastasis through up-regulation of RbAp46 to suppress RECK promoter activity. BMC Cancer 15:172–185
pubmed: 25885317
pmcid: 4377201
doi: 10.1186/s12885-015-1155-7
Zhu X, Demolis N, Jacquet M, Michaeli T (2000) MSI1 suppresses hyperactive RAS via the cAMP-dependent protein kinase and independently of chromatin assembly factor-1. Curr Genet 38(2):60–70
pubmed: 10975254
doi: 10.1007/s002940000133