The multifaceted histone chaperone RbAp46/48 in Plasmodium falciparum: structural insights, production, and characterization.


Journal

Parasitology research
ISSN: 1432-1955
Titre abrégé: Parasitol Res
Pays: Germany
ID NLM: 8703571

Informations de publication

Date de publication:
Jun 2020
Historique:
received: 28 08 2019
accepted: 15 03 2020
pubmed: 5 5 2020
medline: 1 8 2020
entrez: 5 5 2020
Statut: ppublish

Résumé

RbAp46/RBBP7 and RbAp48/RBBP4 are WD40-repeat histone chaperones and chromatin adaptors that reside in multiple complexes involved in maintenance of chromatin structure. RbAp48 is the essential subunit of the chromatin assembly factor-1 (CAF-1) complex, therefore also named as CAF-1C. A detailed in silico sequence and structure analysis of homologs of RbAp46/48 in Plasmodium falciparum (PF3D7_0110700 and PF3D7_1433300) exhibited conservation of characteristic features in both the protein-seven-bladed WD40 β-propeller conformation and different binding interfaces. A comparative structural analysis highlighted species-specific features of the parasite, yeast, drosophila, and human RbAp46/48. In the present study, we report cloning, expression, and characterization of P. falciparum PF3D7_0110700, a putative RbAp46/48 (PfRbAp46/48). PfRbAp46/48 was cloned into pTEM11 vector in fusion with 6xHistidine tag and over-expressed in Escherichia coli B834 cells. The protein was purified by Ni-NTA followed by gel permeation chromatography. The protein expressed in all the three asexual blood stages and exhibited nuclear localization. We showed direct interaction of the purified rPfRbAp46/48 with the histone H4. These findings further our understanding of RbAp46/48 proteins and role of these proteins in the parasite biology.

Identifiants

pubmed: 32363442
doi: 10.1007/s00436-020-06669-5
pii: 10.1007/s00436-020-06669-5
doi:

Substances chimiques

Chromatin 0
Histone Chaperones 0
Histones 0
Protozoan Proteins 0
Recombinant Fusion Proteins 0

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

1753-1765

Références

Alqarni SS, Murthy A, Zhang W, Przewloka MR, Silva AP, Watson AA, Lejon S, Pei XY, Smits AH, Kloet SL, Wang H (2014) Insight into the architecture of the NuRD complex structure of the RbAp48-MTA1 subcomplex. J Biol Chem 289(32):21844–21855
pubmed: 24920672 pmcid: 4139204 doi: 10.1074/jbc.M114.558940
Chahar P, Kaushik M, Gill SS, Gakhar SK, Gopalan N, Datt M, Sharma A, Gill R (2015) Genome-wide collation of the Plasmodium falciparum WDR protein superfamily reveals malarial parasite-specific features. PLoS One 10(6):e0128507
pubmed: 26043001 pmcid: 4456382 doi: 10.1371/journal.pone.0128507
Chen S, Jiao L, Shubbar M, Yang X, Liu X (2018) Unique structural platforms of Suz12 dictate distinct classes of PRC2 for chromatin binding. Mol Cell 69(5):840–852
pubmed: 29499137 pmcid: 5912153 doi: 10.1016/j.molcel.2018.01.039
Creekmore AL, Walt KA, Schultz-Norton JR, Ziegler YS, McLeod IX, Yates JR, Nardulli AM (2008) The role of retinoblastoma-associated proteins 46 and 48 in estrogen receptor alpha mediated gene expression. Mol Cell Endocrinol 291(1–2):79–86
pubmed: 18577416 pmcid: 2642675 doi: 10.1016/j.mce.2008.05.016
Gu X, Jiang D, Yang W, Jacob Y, Michaels SD, He Y (2011) Arabidopsis homologs of retinoblastoma-associated protein 46/48 associate with a histone deacetylase to act redundantly in chromatin silencing. PLoS Genet 7(11):e1002366
pubmed: 22102827 pmcid: 3213158 doi: 10.1371/journal.pgen.1002366
Gupta MK, Agarawal M, Banu K, Reddy KS, Gaur D, Dhar SK (2018) Role of chromatin assembly factor 1 in DNA replication of Plasmodium falciparum. Biochem Biophys Res Commun 495(1):1285–1291
pubmed: 29183721 doi: 10.1016/j.bbrc.2017.11.131
Harrison MM, Ceol CJ, Lu X, Horvitz HR (2006) Some C. elegans class B synthetic multivulva proteins encode a conserved LIN-35 Rb-containing complex distinct from a NuRD-like complex. Proc Natl Acad Sci 103(45):16782–16787
pubmed: 17075059 doi: 10.1073/pnas.0608461103
Hassig CA, Fleischer TC, Billin AN, Schreiber SL, Ayer DE (1997) Histone deacetylase activity is required for full transcriptional repression by mSin3A. Cell 89(3):341–347
pubmed: 9150133 doi: 10.1016/S0092-8674(00)80214-7 pmcid: 9150133
Kaufman PD, Kobayashi R, Stillman B (1997) Ultraviolet radiation sensitivity and reduction of telomeric silencing in Saccharomyces cerevisiae cells lacking chromatin assembly factor-I. Genes Dev 11(3):345–357
pubmed: 9030687 doi: 10.1101/gad.11.3.345
Kelley LA, Mezulis S, Yates CM, Wass MN, Sternberg MJ (2015) The Phyre2 web portal for protein modeling, prediction and analysis. Nat Protoc 10(6):845–858
pubmed: 25950237 pmcid: 5298202 doi: 10.1038/nprot.2015.053
Kim D, Setiaputra D, Jung T, Chung J, Leitner A, Yoon J, Aebersold R, Hebert H, Yip CK, Song JJ (2016) Molecular architecture of yeast chromatin assembly factor 1. Sci Rep 6:26702
pubmed: 27221973 pmcid: 4879628 doi: 10.1038/srep26702
Kuzmichev A, Nishioka K, Erdjument-Bromage H, Tempst P, Reinberg D (2002) Histone methyltransferase activity associated with a human multiprotein complex containing the enhancer of Zeste protein. Genes Dev 16(22):2893–2905
pubmed: 12435631 pmcid: 187479 doi: 10.1101/gad.1035902
Lambros C, Vanderberg JP (1979) Synchronization of Plasmodium falciparum erythrocytic stages in culture. J Parasitol:418–420
pubmed: 383936 doi: 10.2307/3280287
Le Roch KG, Johnson JR, Florens L, Zhou Y, Santrosyan A, Grainger M, Yan SF, Williamson KC, Holder AA, Carucci DJ, Yates JR (2004) Global analysis of transcript and protein levels across the Plasmodium falciparum life cycle. Genome Res 14(11):2308–2318
pubmed: 15520293 pmcid: 525690 doi: 10.1101/gr.2523904
Lejon S, Thong SY, Murthy A, AlQarni S, Murzina NV, Blobel GA, Laue ED, Mackay JP (2011) Insights into association of the NuRD complex with FOG-1 from the crystal structure of an RbAp48· FOG-1 complex. J Biol Chem 286(2):1196–1203
pubmed: 21047798 doi: 10.1074/jbc.M110.195842
Liu Z, Li F, Zhang B, Li S, Wu J, Shi Y (2015) Structural basis of plant homeodomain finger 6 (PHF6) recognition by the retinoblastoma binding protein 4 (RBBP4) component of the nucleosome remodeling and deacetylase (NuRD) complex. J Biol Chem 290(10):6630–6638
pubmed: 25601084 pmcid: 4358295 doi: 10.1074/jbc.M114.610196
Liu WH, Roemer SC, Zhou Y, Shen ZJ, Dennehey BK, Balsbaugh JL, Liddle JC, Nemkov T, Ahn NG, Hansen KC, Tyler JK (2016) The Cac1 subunit of histone chaperone CAF-1 organizes CAF-1-H3/H4 architecture and tetramerizes histones. Elife 5:e18023
pubmed: 27690308 pmcid: 5045291 doi: 10.7554/eLife.18023
Lu X, Horvitz HR (1998) lin-35 and lin-53, two genes that antagonize a C. elegans Ras pathway, encode proteins similar to Rb and its binding protein RbAp48. Cell 95(7):981–991
pubmed: 9875852 doi: 10.1016/S0092-8674(00)81722-5
Luger K, Mäder AW, Richmond RK, Sargent DF, Richmond TJ (1997) Crystal structure of the nucleosome core particle at 2.8 Å resolution. Nature 389(6648):251–260
pubmed: 9305837 doi: 10.1038/38444
Luger K, Rechsteiner TJ, Richmond TJ (1999) Expression and purification of recombinant histones and nucleosome reconstitution. Methods Mol Biol 119:1–16
pubmed: 10804500
Martinez-Balbas MA, Tsukiyama T, Gdula D, Wu C (1998) Drosophila NURF-55, a WD repeat protein involved in histone metabolism. Proc Natl Acad Sci U S A 95:132–137
pubmed: 9419341 pmcid: 18150 doi: 10.1073/pnas.95.1.132
Mattiroli F, Gu Y, Balsbaugh JL, Ahn NG, Luger K (2017) The Cac2 subunit is essential for productive histone binding and nucleosome assembly in CAF-1. Sci Rep 7:46274
pubmed: 28418026 pmcid: 5394680 doi: 10.1038/srep46274
Millard CJ, Varma N, Saleh A, Morris K, Watson PJ, Bottrill AR, Fairall L, Smith CJ, Schwabe JW (2016) The structure of the core NuRD repression complex provides insights into its interaction with chromatin. Elife 5:e13941
pubmed: 27098840 pmcid: 4841774 doi: 10.7554/eLife.13941
Moody RR, Lo MC, Meagher JL, Lin CC, Stevers NO, Tinsley SL, Jung I, Matvekas A, Stuckey JA, Sun D (2018) Probing the interaction between the histone methyltransferase/deacetylase subunit RBBP4/7 and the transcription factor BCL11A in epigenetic complexes. J Biol Chem 293(6):2125–2136
pubmed: 29263092 doi: 10.1074/jbc.M117.811463
Murzina NV, Pei XY, Zhang W, Sparkes M, Vicente-Garcia J, Pratap JV, McLaughlin SH, Ben-Shahar TR, Verreault A, Luisi BF, Laue ED (2008) Structural basis for the recognition of histone H4 by the histone-chaperone RbAp46. Structure 16(7):1077–1085
pubmed: 18571423 pmcid: 2572730 doi: 10.1016/j.str.2008.05.006
Pease BN, Huttlin EL, Jedrychowski MP, Talevich E, Harmon J, Dillman T, Kannan N, Doerig C, Chakrabarti R, Gygi SP, Chakrabarti D (2013) Global analysis of protein expression and phosphorylation of three stages of Plasmodium falciparum intraerythrocytic development. J Proteome Res 12(9):4028–4045
pubmed: 23914800 pmcid: 5292867 doi: 10.1021/pr400394g
Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE (2004) UCSF chimera—a visualization system for exploratory research and analysis. J Comput Chem 25(13):1605–1612
pubmed: 15264254 doi: 10.1002/jcc.20084
Qian YW, Eva YH (1995) Dual retinoblastoma-binding proteins with properties related to a negative regulator of ras in yeast. J Biol Chem 270(43):25507–25513
pubmed: 7503932 doi: 10.1074/jbc.270.43.25507
Rosano GL, Ceccarelli EA (2014) Recombinant protein expression in Escherichia coli: advances and challenges. Front Microbiol 5:172
pubmed: 24860555 pmcid: 4029002
Schmitges FW, Prusty AB, Faty M, Stützer A, Lingaraju GM, Aiwazian J, Sack R, Hess D, Li L, Zhou S, Bunker RD (2011) Histone methylation by PRC2 is inhibited by active chromatin marks. Mol Cell 42(3):330–341
pubmed: 21549310 doi: 10.1016/j.molcel.2011.03.025
Schultz LE, Haltom JA, Almeida MP, Wierson WA, Solin SL, Weiss TJ, Helmer JA, Sandquist EJ, Shive HR, McGrail M (2018) Epigenetic regulators Rbbp4 and Hdac1 are overexpressed in a zebrafish model of RB1 embryonal brain tumor, and are required for neural progenitor survival and proliferation. Dis Model Mech 11(6)
doi: 10.1242/dmm.034124
Shang WH, Hori T, Westhorpe FG, Godek KM, Toyoda A, Misu S, Monma N, Ikeo K, Carroll CW, Takami Y, Fujiyama A (2016) Acetylation of histone H4 lysine 5 and 12 is required for CENP-A deposition into centromeres. Nat Commun 7:13465
pubmed: 27811920 pmcid: 5097169 doi: 10.1038/ncomms13465
Sun A, Li F, Liu Z, Jiang Y, Zhang J, Wu J, Shi Y (2018) Structural and biochemical insights into human zinc finger protein AEBP2 reveals interactions with RBBP4. Protein Cell 9(8):738–742
pubmed: 29134516 doi: 10.1007/s13238-017-0483-6
Taylor-Harding B, Binné UK, Korenjak M, Brehm A, Dyson NJ (2004) p55, the Drosophila ortholog of RbAp46/RbAp48, is required for the repression of dE2F2/RBF-regulated genes. Mol Cell Biol 24(20):9124–9136
pubmed: 15456884 pmcid: 517895 doi: 10.1128/MCB.24.20.9124-9136.2004
Trager W, Jensen JB (1976) Human malaria parasites in continuous culture. Science 193(4254):673–675
pubmed: 781840 doi: 10.1126/science.781840
Valieva ME, Armeev GA, Kudryashova KS, Gerasimova NS, Shaytan AK, Kulaeva OI, McCullough LL, Formosa T, Georgiev PG, Kirpichnikov MP, Studitsky VM (2016) Large-scale ATP-independent nucleosome unfolding by a histone chaperone. Nat Struct Mol Biol 23(12):1111–1116
pubmed: 27820806 pmcid: 5518926 doi: 10.1038/nsmb.3321
Verreault A, Kaufman PD, Kobayashi R, Stillman B (1996) Nucleosome assembly by a complex of CAF-1 and acetylated histones H3/H4. Cell 87(1):95–104
pubmed: 8858152 doi: 10.1016/S0092-8674(00)81326-4
Volk A, Crispino JD (2015) The role of the chromatin assembly complex (CAF-1) and its p60 subunit (CHAF1b) in homeostasis and disease. Biochim Biophys Acta 1849(8):979–986
pubmed: 26066981 pmcid: 4515380 doi: 10.1016/j.bbagrm.2015.05.009
World Malaria Report. WHO 2018
Xue Y, Wong J, Moreno GT, Young MK, Côté J, Wang W (1998) NURD, a novel complex with both ATP-dependent chromatin-remodeling and histone deacetylase activities. Mol Cell 2(6):851–861
pubmed: 9885572 doi: 10.1016/S1097-2765(00)80299-3
Yeh HH, Tseng YF, Hsu YC, Lan SH, Wu SY, Raghavaraju G, Cheng DE, Lee YR, Chang TY, Chow NH, Hung WC, Liu HS (2015) Ras induces experimental lung metastasis through up-regulation of RbAp46 to suppress RECK promoter activity. BMC Cancer 15:172–185
pubmed: 25885317 pmcid: 4377201 doi: 10.1186/s12885-015-1155-7
Zhu X, Demolis N, Jacquet M, Michaeli T (2000) MSI1 suppresses hyperactive RAS via the cAMP-dependent protein kinase and independently of chromatin assembly factor-1. Curr Genet 38(2):60–70
pubmed: 10975254 doi: 10.1007/s002940000133

Auteurs

Manjeri Kaushik (M)

Centre for Biotechnology, Maharshi Dayanand University, Rohtak, Haryana, 124 001, India.

Ashima Nehra (A)

Centre for Biotechnology, Maharshi Dayanand University, Rohtak, Haryana, 124 001, India.

Surendra Kumar Gakhar (SK)

Centre for Biotechnology, Maharshi Dayanand University, Rohtak, Haryana, 124 001, India.

Sarvajeet Singh Gill (SS)

Centre for Biotechnology, Maharshi Dayanand University, Rohtak, Haryana, 124 001, India.

Ritu Gill (R)

Centre for Biotechnology, Maharshi Dayanand University, Rohtak, Haryana, 124 001, India. ritu_gill@hotmail.com.

Articles similaires

Animals Hemiptera Insect Proteins Phylogeny Insecticides
Eimeria tenella Animals Antigens, Protozoan Chickens Genetic Variation

Conservation of the cooling agent binding pocket within the TRPM subfamily.

Kate Huffer, Matthew C S Denley, Elisabeth V Oskoui et al.
1.00
TRPM Cation Channels Animals Binding Sites Mice Pyrimidinones
Fucosyltransferases Drug Repositioning Molecular Docking Simulation Molecular Dynamics Simulation Humans

Classifications MeSH