Prime genome editing in rice and wheat.


Journal

Nature biotechnology
ISSN: 1546-1696
Titre abrégé: Nat Biotechnol
Pays: United States
ID NLM: 9604648

Informations de publication

Date de publication:
05 2020
Historique:
received: 12 12 2019
accepted: 11 02 2020
entrez: 13 5 2020
pubmed: 13 5 2020
medline: 13 8 2020
Statut: ppublish

Résumé

Prime editors, which are CRISPR-Cas9 nickase (H840A)-reverse transcriptase fusions programmed with prime editing guide RNAs (pegRNAs), can edit bases in mammalian cells without donor DNA or double-strand breaks. We adapted prime editors for use in plants through codon, promoter, and editing-condition optimization. The resulting suite of plant prime editors enable point mutations, insertions and deletions in rice and wheat protoplasts. Regenerated prime-edited rice plants were obtained at frequencies of up to 21.8%.

Identifiants

pubmed: 32393904
doi: 10.1038/s41587-020-0455-x
pii: 10.1038/s41587-020-0455-x
doi:

Substances chimiques

Deoxyribonuclease I EC 3.1.21.1

Types de publication

Journal Article Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

582-585

Subventions

Organisme : NIAID NIH HHS
ID : U01 AI142756
Pays : United States
Organisme : NHGRI NIH HHS
ID : RM1 HG009490
Pays : United States
Organisme : NIBIB NIH HHS
ID : R01 EB022376
Pays : United States
Organisme : NIGMS NIH HHS
ID : R35 GM118062
Pays : United States
Organisme : Howard Hughes Medical Institute
Pays : United States

Commentaires et corrections

Type : CommentIn

Références

Voytas, D. F. & Gao, C. Precision genome engineering and agriculture: opportunities and regulatory challenges. PLoS Biol. 12, e1001877 (2014).
doi: 10.1371/journal.pbio.1001877 pubmed: 24915127 pmcid: 4051594
Wang, W. et al. Genomic variation in 3,010 diverse accessions of Asian cultivated rice. Nature 557, 43–49 (2018).
doi: 10.1038/s41586-018-0063-9 pubmed: 29695866 pmcid: 6784863
Puchta, H. & Fauser, F. Gene targeting in plants: 25 years later. Int. J. Dev. Biol. 57, 629–637 (2013).
doi: 10.1387/ijdb.130194hp pubmed: 24166445
Chen, K., Wang, Y., Zhang, R., Zhang, H. & Gao, C. CRISPR/Cas genome editing and precision plant breeding in agriculture. Annu. Rev. Plant Biol. 29, 667–697 (2019).
doi: 10.1146/annurev-arplant-050718-100049
Svitashev, S. et al. Targeted mutagenesis, precise gene editing, and site-specific gene insertion in maize using Cas9 and guide RNA. Plant Physiol. 169, 931–945 (2015).
doi: 10.1104/pp.15.00793 pubmed: 26269544 pmcid: 4587463
Ran, Y., Liang, Z. & Gao, C. Current and future editing reagent delivery systems for plant genome editing. Sci. China Life Sci. 60, 490–505 (2017).
doi: 10.1007/s11427-017-9022-1 pubmed: 28527114
Komor, A. C., Kim, Y. B., Packer, M. S., Zuris, J. A. & Liu, D. R. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature 533, 420–424 (2016).
doi: 10.1038/nature17946 pubmed: 27096365 pmcid: 4873371
Nishida, K. et al. Targeted nucleotide editing using hybrid prokaryotic and vertebrate adaptive immune systems. Science 353, 1248–1256 (2016).
doi: 10.1126/science.aaf8729
Gaudelli, N. M. et al. Programmable base editing of A•T to G•C in genomic DNA without DNA cleavage. Nature 551, 464–471 (2017).
doi: 10.1038/nature24644 pubmed: 29160308 pmcid: 5726555
Kim, Y. B. et al. Increasing the genome-targeting scope and precision of base editing with engineered Cas9-cytidine deaminase fusions. Nat. Biotechnol. 35, 371–376 (2017).
doi: 10.1038/nbt.3803 pubmed: 28191901 pmcid: 5388574
Anzalone, A. V. et al. Search-and-replace genome editing without double-strand breaks or donor DNA. Nature 576, 149–157 (2019).
doi: 10.1038/s41586-019-1711-4 pubmed: 31634902 pmcid: 6907074
Plant, A. L., Covey, S. N. & Grierson, D. Detection of a subgenomic mRNA for gene V, the putative reverse transcriptase gene of cauliflower mosaic virus. Nucleic Acids Res. 13, 8305–8321 (1985).
doi: 10.1093/nar/13.23.8305 pubmed: 2417196 pmcid: 322136
Lim, D. & Maas, W. K. Reverse transcriptase-dependent synthesis of a covalently linked, branched DNA-RNA compound in E. coli B. Cell 56, 891–904 (1989).
doi: 10.1016/0092-8674(89)90693-4 pubmed: 2466573
Zong, Y. et al. Precise base editing in rice, wheat and maize with a Cas9-cytidine deaminase fusion. Nat. Biotechnol. 35, 438–440 (2017).
doi: 10.1038/nbt.3811 pubmed: 28244994
Gao, Y. & Zhao, Y. Self-processing of ribozyme-flanked RNAs into guide RNAs in vitro and in vivo for CRISPR-mediated genome editing. J. Integr. Plant Biol. 56, 343–349 (2014).
doi: 10.1111/jipb.12152 pubmed: 24373158
Li, C. et al. Expanded base editing in rice and wheat using a Cas9-adenosine deaminase fusion. Genome Biol. 19, 59 (2018).
doi: 10.1186/s13059-018-1443-z pubmed: 29807545 pmcid: 5972399
Shan, Q. et al. Targeted genome modification of crop plants using a CRISPR-Cas system. Nat. Biotechnol. 31, 686–688 (2013).
doi: 10.1038/nbt.2650 pubmed: 23929338
Wang, Y. et al. Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew. Nat. Biotechnol. 32, 947–951 (2014).
doi: 10.1038/nbt.2969 pubmed: 25038773
Xing, H. et al. A CRISPR/Cas9 toolkit for multiplex genome editing in plants. BMC Plant Biol. 14, 327 (2014).
doi: 10.1186/s12870-014-0327-y pubmed: 25432517 pmcid: 4262988
Čermák, T. et al. A multipurpose toolkit to enable advanced genome engineering in plants. Plant Cell 29, 1196–1217 (2017).
doi: 10.1105/tpc.16.00922 pubmed: 28522548 pmcid: 5502448
Zong, Y. et al. Efficient C-to-T base editing in plants using a fusion of nCas9 and human APOBEC3A. Nat. Biotechnol. 36, 950–953 (2018).
doi: 10.1038/nbt.4261
Shan, Q. et al. Rapid and efficient gene modification in rice and Brachypodium using TALENs. Mol. Plant 6, 1365–1368 (2013).
doi: 10.1093/mp/sss162 pubmed: 23288864 pmcid: 3968307

Auteurs

Qiupeng Lin (Q)

State Key Laboratory of Plant Cell and Chromosome Engineering, Center for Genome Editing, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China.
College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China.

Yuan Zong (Y)

State Key Laboratory of Plant Cell and Chromosome Engineering, Center for Genome Editing, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China.

Chenxiao Xue (C)

State Key Laboratory of Plant Cell and Chromosome Engineering, Center for Genome Editing, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China.
College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China.

Shengxing Wang (S)

State Key Laboratory of Plant Cell and Chromosome Engineering, Center for Genome Editing, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China.

Shuai Jin (S)

State Key Laboratory of Plant Cell and Chromosome Engineering, Center for Genome Editing, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China.
College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China.

Zixu Zhu (Z)

State Key Laboratory of Plant Cell and Chromosome Engineering, Center for Genome Editing, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China.
College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China.

Yanpeng Wang (Y)

State Key Laboratory of Plant Cell and Chromosome Engineering, Center for Genome Editing, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China.
College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China.

Andrew V Anzalone (AV)

Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of Harvard and MIT, Cambridge, MA, USA.
Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA.
Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA.

Aditya Raguram (A)

Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of Harvard and MIT, Cambridge, MA, USA.
Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA.
Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA.

Jordan L Doman (JL)

Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of Harvard and MIT, Cambridge, MA, USA.
Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA.
Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA.

David R Liu (DR)

Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of Harvard and MIT, Cambridge, MA, USA.
Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA.
Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA.

Caixia Gao (C)

State Key Laboratory of Plant Cell and Chromosome Engineering, Center for Genome Editing, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China. cxgao@genetics.ac.cn.
College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China. cxgao@genetics.ac.cn.

Articles similaires

Genome Size Genome, Plant Magnoliopsida Evolution, Molecular Arabidopsis
Prader-Willi Syndrome Humans Angelman Syndrome CRISPR-Cas Systems Human Embryonic Stem Cells
Triticum Transcription Factors Gene Expression Regulation, Plant Plant Proteins Salt Stress
1.00
Oryza Agricultural Irrigation Potassium Sodium Soil

Classifications MeSH