Prime genome editing in rice and wheat.
Journal
Nature biotechnology
ISSN: 1546-1696
Titre abrégé: Nat Biotechnol
Pays: United States
ID NLM: 9604648
Informations de publication
Date de publication:
05 2020
05 2020
Historique:
received:
12
12
2019
accepted:
11
02
2020
entrez:
13
5
2020
pubmed:
13
5
2020
medline:
13
8
2020
Statut:
ppublish
Résumé
Prime editors, which are CRISPR-Cas9 nickase (H840A)-reverse transcriptase fusions programmed with prime editing guide RNAs (pegRNAs), can edit bases in mammalian cells without donor DNA or double-strand breaks. We adapted prime editors for use in plants through codon, promoter, and editing-condition optimization. The resulting suite of plant prime editors enable point mutations, insertions and deletions in rice and wheat protoplasts. Regenerated prime-edited rice plants were obtained at frequencies of up to 21.8%.
Identifiants
pubmed: 32393904
doi: 10.1038/s41587-020-0455-x
pii: 10.1038/s41587-020-0455-x
doi:
Substances chimiques
Deoxyribonuclease I
EC 3.1.21.1
Types de publication
Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
582-585Subventions
Organisme : NIAID NIH HHS
ID : U01 AI142756
Pays : United States
Organisme : NHGRI NIH HHS
ID : RM1 HG009490
Pays : United States
Organisme : NIBIB NIH HHS
ID : R01 EB022376
Pays : United States
Organisme : NIGMS NIH HHS
ID : R35 GM118062
Pays : United States
Organisme : Howard Hughes Medical Institute
Pays : United States
Commentaires et corrections
Type : CommentIn
Références
Voytas, D. F. & Gao, C. Precision genome engineering and agriculture: opportunities and regulatory challenges. PLoS Biol. 12, e1001877 (2014).
doi: 10.1371/journal.pbio.1001877
pubmed: 24915127
pmcid: 4051594
Wang, W. et al. Genomic variation in 3,010 diverse accessions of Asian cultivated rice. Nature 557, 43–49 (2018).
doi: 10.1038/s41586-018-0063-9
pubmed: 29695866
pmcid: 6784863
Puchta, H. & Fauser, F. Gene targeting in plants: 25 years later. Int. J. Dev. Biol. 57, 629–637 (2013).
doi: 10.1387/ijdb.130194hp
pubmed: 24166445
Chen, K., Wang, Y., Zhang, R., Zhang, H. & Gao, C. CRISPR/Cas genome editing and precision plant breeding in agriculture. Annu. Rev. Plant Biol. 29, 667–697 (2019).
doi: 10.1146/annurev-arplant-050718-100049
Svitashev, S. et al. Targeted mutagenesis, precise gene editing, and site-specific gene insertion in maize using Cas9 and guide RNA. Plant Physiol. 169, 931–945 (2015).
doi: 10.1104/pp.15.00793
pubmed: 26269544
pmcid: 4587463
Ran, Y., Liang, Z. & Gao, C. Current and future editing reagent delivery systems for plant genome editing. Sci. China Life Sci. 60, 490–505 (2017).
doi: 10.1007/s11427-017-9022-1
pubmed: 28527114
Komor, A. C., Kim, Y. B., Packer, M. S., Zuris, J. A. & Liu, D. R. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature 533, 420–424 (2016).
doi: 10.1038/nature17946
pubmed: 27096365
pmcid: 4873371
Nishida, K. et al. Targeted nucleotide editing using hybrid prokaryotic and vertebrate adaptive immune systems. Science 353, 1248–1256 (2016).
doi: 10.1126/science.aaf8729
Gaudelli, N. M. et al. Programmable base editing of A•T to G•C in genomic DNA without DNA cleavage. Nature 551, 464–471 (2017).
doi: 10.1038/nature24644
pubmed: 29160308
pmcid: 5726555
Kim, Y. B. et al. Increasing the genome-targeting scope and precision of base editing with engineered Cas9-cytidine deaminase fusions. Nat. Biotechnol. 35, 371–376 (2017).
doi: 10.1038/nbt.3803
pubmed: 28191901
pmcid: 5388574
Anzalone, A. V. et al. Search-and-replace genome editing without double-strand breaks or donor DNA. Nature 576, 149–157 (2019).
doi: 10.1038/s41586-019-1711-4
pubmed: 31634902
pmcid: 6907074
Plant, A. L., Covey, S. N. & Grierson, D. Detection of a subgenomic mRNA for gene V, the putative reverse transcriptase gene of cauliflower mosaic virus. Nucleic Acids Res. 13, 8305–8321 (1985).
doi: 10.1093/nar/13.23.8305
pubmed: 2417196
pmcid: 322136
Lim, D. & Maas, W. K. Reverse transcriptase-dependent synthesis of a covalently linked, branched DNA-RNA compound in E. coli B. Cell 56, 891–904 (1989).
doi: 10.1016/0092-8674(89)90693-4
pubmed: 2466573
Zong, Y. et al. Precise base editing in rice, wheat and maize with a Cas9-cytidine deaminase fusion. Nat. Biotechnol. 35, 438–440 (2017).
doi: 10.1038/nbt.3811
pubmed: 28244994
Gao, Y. & Zhao, Y. Self-processing of ribozyme-flanked RNAs into guide RNAs in vitro and in vivo for CRISPR-mediated genome editing. J. Integr. Plant Biol. 56, 343–349 (2014).
doi: 10.1111/jipb.12152
pubmed: 24373158
Li, C. et al. Expanded base editing in rice and wheat using a Cas9-adenosine deaminase fusion. Genome Biol. 19, 59 (2018).
doi: 10.1186/s13059-018-1443-z
pubmed: 29807545
pmcid: 5972399
Shan, Q. et al. Targeted genome modification of crop plants using a CRISPR-Cas system. Nat. Biotechnol. 31, 686–688 (2013).
doi: 10.1038/nbt.2650
pubmed: 23929338
Wang, Y. et al. Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew. Nat. Biotechnol. 32, 947–951 (2014).
doi: 10.1038/nbt.2969
pubmed: 25038773
Xing, H. et al. A CRISPR/Cas9 toolkit for multiplex genome editing in plants. BMC Plant Biol. 14, 327 (2014).
doi: 10.1186/s12870-014-0327-y
pubmed: 25432517
pmcid: 4262988
Čermák, T. et al. A multipurpose toolkit to enable advanced genome engineering in plants. Plant Cell 29, 1196–1217 (2017).
doi: 10.1105/tpc.16.00922
pubmed: 28522548
pmcid: 5502448
Zong, Y. et al. Efficient C-to-T base editing in plants using a fusion of nCas9 and human APOBEC3A. Nat. Biotechnol. 36, 950–953 (2018).
doi: 10.1038/nbt.4261
Shan, Q. et al. Rapid and efficient gene modification in rice and Brachypodium using TALENs. Mol. Plant 6, 1365–1368 (2013).
doi: 10.1093/mp/sss162
pubmed: 23288864
pmcid: 3968307