Substantial improvement of tetraene macrolide production in Streptomyces diastatochromogenes by cumulative drug resistance mutations.
Journal
PloS one
ISSN: 1932-6203
Titre abrégé: PLoS One
Pays: United States
ID NLM: 101285081
Informations de publication
Date de publication:
2020
2020
Historique:
received:
10
02
2020
accepted:
25
04
2020
entrez:
13
5
2020
pubmed:
13
5
2020
medline:
31
7
2020
Statut:
epublish
Résumé
Tetraene macrolides remain one of the most reliable fungicidal agents as resistance of fungal pathogens to these antibiotics is relatively rare. The modes of action and biosynthesis of polyene macrolides had been the focus of research over the past few years. However, few studies have been carried out on the overproduction of polyene macrolides. In the present study, cumulative drug-resistance mutation was used to obtain a quintuple mutant G5-59 with huge tetraene macrolide overproduction from the starting strain Streptomyces diastatochromogenes 1628. Through DNA sequence analysis, the mutation points in the genes of rsmG, rpsL and rpoB were identified. Additionally, the growth characteristic and expression level of tetrRI gene (belonging to the large ATP binding regulator of LuxR family) involved in the biosynthesis of tetraene macrolides were analyzed. As examined with 5L fermentor, the quintuple mutant G5-59 grew very well and the maximum productivity of tetramycin A, tetramycin P and tetrin B was as high as 1735, 2811 and 1500 mg/L, which was 8.7-, 16- and 25-fold higher than that of the wild-type strain 1628, respectively. The quintuple mutant G5-59 could be useful for further improvement of tetraene macrolides production at industrial level.
Identifiants
pubmed: 32396566
doi: 10.1371/journal.pone.0232927
pii: PONE-D-20-03869
pmc: PMC7217443
doi:
Substances chimiques
Bacterial Proteins
0
Macrolides
0
Ribosomal Proteins
0
tetramycin
0
tetrin B
34280-27-8
Methyltransferases
EC 2.1.1.-
DNA-Directed RNA Polymerases
EC 2.7.7.6
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
e0232927Déclaration de conflit d'intérêts
The authors have declared that no competing interests exist.
Références
Chembiochem. 2012 Oct 15;13(15):2234-42
pubmed: 22961947
J Ind Microbiol Biotechnol. 2001 Dec;27(6):368-77
pubmed: 11774002
Nat Protoc. 2008;3(6):1101-8
pubmed: 18546601
J Antibiot (Tokyo). 2016 May;69(5):406-10
pubmed: 26648118
Biosci Biotechnol Biochem. 2007 Jun;71(6):1373-86
pubmed: 17587668
J Bacteriol. 1996 Dec;178(24):7276-84
pubmed: 8955413
Nature. 2000 Sep 21;407(6802):340-8
pubmed: 11014183
J Bacteriol. 2013 Jul;195(13):2959-70
pubmed: 23603745
Appl Microbiol Biotechnol. 2005 Jun;67(4):436-43
pubmed: 15700127
Enzyme Microb Technol. 2008 Jan;42(2):145-50
pubmed: 22578864
J Bacteriol. 1987 Aug;169(8):3608-16
pubmed: 3112126
Antibiotics (Basel). 2019 Aug 30;8(3):
pubmed: 31480298
Curr Med Chem. 2003 Feb;10(3):211-23
pubmed: 12570708
Mol Genet Genomics. 2002 Oct;268(2):179-89
pubmed: 12395192
Microbiology. 2002 Nov;148(Pt 11):3365-3373
pubmed: 12427928
Appl Environ Microbiol. 2009 Jul;75(14):4919-22
pubmed: 19447953
Appl Environ Microbiol. 2001 Apr;67(4):1885-92
pubmed: 11282646
Antimicrob Agents Chemother. 2015 Dec;59(12):7799-804
pubmed: 26369962
J Antibiot (Tokyo). 2009 Dec;62(12):669-73
pubmed: 19816520
Antimicrob Agents Chemother. 1998 Aug;42(8):2041-7
pubmed: 9687404
Toxicol Appl Pharmacol. 1966 Jan;8(1):97-109
pubmed: 5296925
Appl Microbiol Biotechnol. 2005 Aug;68(2):151-62
pubmed: 15821914
J Antibiot (Tokyo). 2017 Jan;70(1):25-40
pubmed: 27381522
J Bacteriol. 2018 Aug 10;200(17):
pubmed: 29866810
Appl Microbiol Biotechnol. 2016 May;100(9):3893-908
pubmed: 27023916
World J Microbiol Biotechnol. 2013 Aug;29(8):1443-52
pubmed: 23468248
J Bacteriol. 2002 Jul;184(14):3984-91
pubmed: 12081971
PLoS One. 2018 Aug 30;13(8):e0203006
pubmed: 30161195
Appl Environ Microbiol. 2008 May;74(9):2834-40
pubmed: 18310410
Adv Appl Microbiol. 2004;56:155-84
pubmed: 15566979