Characterization of genetic determinants of the resistance to phylloxera, Daktulosphaira vitifoliae, and the dagger nematode Xiphinema index from muscadine background.


Journal

BMC plant biology
ISSN: 1471-2229
Titre abrégé: BMC Plant Biol
Pays: England
ID NLM: 100967807

Informations de publication

Date de publication:
12 May 2020
Historique:
received: 06 09 2019
accepted: 26 02 2020
entrez: 14 5 2020
pubmed: 14 5 2020
medline: 12 1 2021
Statut: epublish

Résumé

Muscadine (Muscadinia rotundifolia) is known as a resistance source to many pests and diseases in grapevine. The genetics of its resistance to two major grapevine pests, the phylloxera D. vitifoliae and the dagger nematode X. index, vector of the Grapevine fanleaf virus (GFLV), was investigated in a backcross progeny between the F1 resistant hybrid material VRH8771 (Vitis-Muscadinia) derived from the muscadine R source 'NC184-4' and V. vinifera cv. 'Cabernet-Sauvignon' (CS). In this pseudo-testcross, parental maps were constructed using simple-sequence repeats markers and single nucleotide polymorphism markers from a GBS approach. For the VRH8771 map, 2271 SNP and 135 SSR markers were assembled, resulting in 19 linkage groups (LG) and an average distance between markers of 0.98 cM. Phylloxera resistance was assessed by monitoring root nodosity number in an in planta experiment and larval development in a root in vitro assay. Nematode resistance was studied using 10-12 month long tests for the selection of durable resistance and rating criteria based on nematode reproduction factor and gall index. A major QTL for phylloxera larval development, explaining more than 70% of the total variance and co-localizing with a QTL for nodosity number, was identified on LG 7 and designated RDV6. Additional QTLs were detected on LG 3 (RDV7) and LG 10 (RDV8), depending on the in planta or in vitro experiments, suggesting that various loci may influence or modulate nodosity formation and larval development. Using a Bulked Segregant Analysis approach and a proportion test, markers clustered in three regions on LG 9, LG 10 and LG 18 were shown to be associated to the nematode resistant phenotype. QTL analysis confirmed the results and QTLs were thus designated respectively XiR2, XiR3 and XiR4, although a LOD-score below the significant threshold value was obtained for the QTL on LG 18. Based on a high-resolution linkage map and a segregating grapevine backcross progeny, the first QTLs for resistance to D. vitifoliae and to X. index were identified from a muscadine source. All together these results open the way to the development of marker-assisted selection in grapevine rootstock breeding programs based on muscadine derived resistance to phylloxera and to X. index in order to delay GFLV transmission.

Sections du résumé

BACKGROUND BACKGROUND
Muscadine (Muscadinia rotundifolia) is known as a resistance source to many pests and diseases in grapevine. The genetics of its resistance to two major grapevine pests, the phylloxera D. vitifoliae and the dagger nematode X. index, vector of the Grapevine fanleaf virus (GFLV), was investigated in a backcross progeny between the F1 resistant hybrid material VRH8771 (Vitis-Muscadinia) derived from the muscadine R source 'NC184-4' and V. vinifera cv. 'Cabernet-Sauvignon' (CS).
RESULTS RESULTS
In this pseudo-testcross, parental maps were constructed using simple-sequence repeats markers and single nucleotide polymorphism markers from a GBS approach. For the VRH8771 map, 2271 SNP and 135 SSR markers were assembled, resulting in 19 linkage groups (LG) and an average distance between markers of 0.98 cM. Phylloxera resistance was assessed by monitoring root nodosity number in an in planta experiment and larval development in a root in vitro assay. Nematode resistance was studied using 10-12 month long tests for the selection of durable resistance and rating criteria based on nematode reproduction factor and gall index. A major QTL for phylloxera larval development, explaining more than 70% of the total variance and co-localizing with a QTL for nodosity number, was identified on LG 7 and designated RDV6. Additional QTLs were detected on LG 3 (RDV7) and LG 10 (RDV8), depending on the in planta or in vitro experiments, suggesting that various loci may influence or modulate nodosity formation and larval development. Using a Bulked Segregant Analysis approach and a proportion test, markers clustered in three regions on LG 9, LG 10 and LG 18 were shown to be associated to the nematode resistant phenotype. QTL analysis confirmed the results and QTLs were thus designated respectively XiR2, XiR3 and XiR4, although a LOD-score below the significant threshold value was obtained for the QTL on LG 18.
CONCLUSIONS CONCLUSIONS
Based on a high-resolution linkage map and a segregating grapevine backcross progeny, the first QTLs for resistance to D. vitifoliae and to X. index were identified from a muscadine source. All together these results open the way to the development of marker-assisted selection in grapevine rootstock breeding programs based on muscadine derived resistance to phylloxera and to X. index in order to delay GFLV transmission.

Identifiants

pubmed: 32398088
doi: 10.1186/s12870-020-2310-0
pii: 10.1186/s12870-020-2310-0
pmc: PMC7218577
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

213

Subventions

Organisme : FP7 Ideas: European Research Council
ID : 311775
Organisme : Ministère de l'Agriculture, de l'Agroalimentaire et de la Forêt
ID : C-2014-09
Organisme : Ministère de l'Agriculture, de l'Agroalimentaire et de la Forêt
ID : EDP 09 16 00 2775
Organisme : Ministère de l'Agriculture, de l'Agroalimentaire et de la Forêt
ID : EDP 09 17 00 3392
Organisme : Ministère de l'Agriculture, de l'Agroalimentaire et de la Forêt
ID : EDP 09 18 00 3764

Références

Nature. 2007 Sep 27;449(7161):463-7
pubmed: 17721507
Theor Appl Genet. 2019 Apr;132(4):1073-1087
pubmed: 30535509
Theor Appl Genet. 2012 Dec;125(8):1663-75
pubmed: 22865124
Trends Biotechnol. 2009 Sep;27(9):522-30
pubmed: 19679362
BMC Plant Biol. 2018 Dec 18;18(1):360
pubmed: 30563461
Nucleic Acids Res. 2012 Aug;40(15):e115
pubmed: 22730293
Nat Genet. 2011 May;43(5):491-8
pubmed: 21478889
Front Plant Sci. 2014 Jul 30;5:367
pubmed: 25126091
Theor Appl Genet. 2019 Jun;132(6):1847-1860
pubmed: 30848297
Theor Appl Genet. 2010 Aug;121(4):789-99
pubmed: 20490447
Genetics. 2007 Aug;176(4):2637-50
pubmed: 17603124
BMC Plant Biol. 2016 Jul 29;16(1):170
pubmed: 27473850
Trends Genet. 2006 Sep;22(9):511-9
pubmed: 16872714
Theor Appl Genet. 2009 Oct;119(6):1039-51
pubmed: 19626311
Bioinformatics. 2009 Jul 15;25(14):1754-60
pubmed: 19451168
Genomics. 1995 Dec 10;30(3):450-8
pubmed: 8825630
Theor Appl Genet. 2004 Sep;109(5):1017-27
pubmed: 15184982
Theor Appl Genet. 2009 May;118(7):1261-78
pubmed: 19238349
Theor Appl Genet. 2014 Jan;127(1):73-84
pubmed: 24072208
Genome Res. 2010 Sep;20(9):1297-303
pubmed: 20644199
Bioinformatics. 2003 May 1;19(7):889-90
pubmed: 12724300
Mol Genet Genomics. 2016 Aug;291(4):1573-94
pubmed: 27038830
PLoS One. 2011 May 04;6(5):e19379
pubmed: 21573248
Phytopathology. 2008 Aug;98(8):942-8
pubmed: 18943213
Theor Appl Genet. 2012 Oct;125(6):1195-210
pubmed: 22688272
Mol Breed. 2017;37(1):1
pubmed: 28127252
BMC Plant Biol. 2012 Aug 21;12:148
pubmed: 22908993
Theor Appl Genet. 2011 Apr;122(6):1059-73
pubmed: 21188350
Theor Appl Genet. 2008 Jan;116(2):305-11
pubmed: 18004541
Theor Appl Genet. 2007 May;114(7):1249-63
pubmed: 17380315
PLoS One. 2015 Aug 05;10(8):e0134880
pubmed: 26244767
Bioinformatics. 2011 Aug 1;27(15):2156-8
pubmed: 21653522
Theor Appl Genet. 2019 Jan;132(1):137-147
pubmed: 30341491
Theor Appl Genet. 2006 Aug;113(3):369-82
pubmed: 16799809
Genome. 1999 Jun;42(3):367-73
pubmed: 10382286
Curr Protoc Bioinformatics. 2013;43:11.10.1-11.10.33
pubmed: 25431634
Theor Appl Genet. 2019 Jun;132(6):1733-1744
pubmed: 30783744
Theor Appl Genet. 1993 Sep;86(8):985-90
pubmed: 24194007
Genetics. 1994 Aug;137(4):1121-37
pubmed: 7982566
PLoS One. 2013 May 17;8(5):e62831
pubmed: 23690957
Theor Appl Genet. 2009 Dec;120(1):163-76
pubmed: 19821064
Proc Natl Acad Sci U S A. 1991 Nov 1;88(21):9828-32
pubmed: 1682921

Auteurs

Bernadette Rubio (B)

INRAE, UMR EGFV, 33883, Villenave d'Ornon, France.
IFV, Domaine de l'Espiguette, 30240, Le Grau du Roi, France.

Guillaume Lalanne-Tisné (G)

INRAE, UMR EGFV, 33883, Villenave d'Ornon, France.
IFV, Domaine de l'Espiguette, 30240, Le Grau du Roi, France.

Roger Voisin (R)

INRAE, Université Nice Côte d'Azur, CNRS, ISA, 06903, Sophia Antipolis, France.

Jean-Pascal Tandonnet (JP)

INRAE, UMR EGFV, 33883, Villenave d'Ornon, France.

Ulysse Portier (U)

INRAE, Université Nice Côte d'Azur, CNRS, ISA, 06903, Sophia Antipolis, France.

Cyril Van Ghelder (C)

INRAE, Université Nice Côte d'Azur, CNRS, ISA, 06903, Sophia Antipolis, France.

Maria Lafargue (M)

INRAE, UMR EGFV, 33883, Villenave d'Ornon, France.

Jean-Pierre Petit (JP)

INRAE, UMR EGFV, 33883, Villenave d'Ornon, France.

Martine Donnart (M)

INRAE, UMR EGFV, 33883, Villenave d'Ornon, France.

Benjamin Joubard (B)

INRAE, UMR SAVE, 33883, Villenave d'Ornon, France.

Pierre-François Bert (PF)

INRAE, UMR EGFV, 33883, Villenave d'Ornon, France.

Daciana Papura (D)

INRAE, UMR SAVE, 33883, Villenave d'Ornon, France.

Loïc Le Cunff (L)

IFV, Domaine de l'Espiguette, 30240, Le Grau du Roi, France.

Nathalie Ollat (N)

INRAE, UMR EGFV, 33883, Villenave d'Ornon, France. nathalie.ollat@inrae.fr.

Daniel Esmenjaud (D)

INRAE, Université Nice Côte d'Azur, CNRS, ISA, 06903, Sophia Antipolis, France.

Articles similaires

Robotic Surgical Procedures Animals Humans Telemedicine Models, Animal

Odour generalisation and detection dog training.

Lyn Caldicott, Thomas W Pike, Helen E Zulch et al.
1.00
Animals Odorants Dogs Generalization, Psychological Smell
Animals TOR Serine-Threonine Kinases Colorectal Neoplasms Colitis Mice
Animals Tail Swine Behavior, Animal Animal Husbandry

Classifications MeSH